Research Database
Displaying 41 - 60 of 230
Human driven climate change increased the likelihood of the 2023 record area burned in Canada
Year: 2024
In 2023, wildfires burned 15 million hectares in Canada, more than doubling the previous record. These wildfires caused a record number of evacuations, unprecedented air quality impacts across Canada and the northeastern United States, and substantial strain on fire management resources. Using climate models, we show that human-induced climate change significantly increased the likelihood of area burned at least as large as in 2023 across most of Canada, with more than two-fold increases in the east and southwest. The long fire season was more than five times as likely and the large areas…
Publication Type: Journal Article
A Preliminary Case Study on the Compounding Effects of Local Emissions and Upstream Wildfires on Urban Air Pollution
Year: 2024
Interactions between urban and wildfire pollution emissions are active areas of research, with numerous aircraft field campaigns and satellite analyses of wildfire pollution being conducted in recent years. Several studies have found that elevated ozone and particulate pollution levels are both generally associated with wildfire smoke in urban areas. We measured pollutant concentrations at two Utah Division of Air Quality regulatory air quality observation sites and a local hot spot (a COVID-19 testing site) within a 48 h period of increasing wildfire smoke impacts that occurred in Salt Lake…
Publication Type: Journal Article
Wildfire probability estimated from recent climate and fine fuels across the big sagebrush region
Year: 2024
BackgroundWildfire is a major proximate cause of historical and ongoing losses of intact big sagebrush (Artemisia tridentata Nutt.) plant communities and declines in sagebrush obligate wildlife species. In recent decades, fire return intervals have shortened and area burned has increased in some areas, and habitat degradation is occurring where post-fire re-establishment of sagebrush is hindered by invasive annual grasses. In coming decades, the changing climate may accelerate these wildfire and invasive feedbacks, although projecting future wildfire dynamics requires a better…
Publication Type: Journal Article
Predicting daily firefighting personnel deployment trends in the western United States
Year: 2024
Projected increases in wildfire frequency, size, and severity may further stress already scarce firefighting resources in the western United States that are in high demand. Machine learning is a promising field with the ability to model firefighting resource usage without compromising dataset size or complexity. In this study, the Categorical Boosting (CatBoost) model was used with historical (2012-2020) wildfire data to train three models that calculate predicted daily counts of 1) total assigned personnel (total personnel), 2) assigned personnel that are at the fire (ground personnel), and…
Publication Type: Journal Article
Limited availability of health risk communication related to community smoke exposure from prescribed burns in the United States: a review
Year: 2024
Prescribed burns are used to maintain wildland ecosystems and decrease fuel loads and associated wildfire hazard. Prescribed burns may produce enough smoke to cause adverse health outcomes. The aim of this review is to understand what communication materials exist for disseminating health risk information related to prescribed burn smoke and challenges to developing such communication. We examined United States peer-reviewed literature from PubMed, Scopus, and Web of Science databases and conducted an environmental scan of grey literature including materials from federal, and several US state…
Publication Type: Journal Article
Estimating the influence of field inventory sampling intensity on forest landscape model performance for determining high-severity wildfire risk
Year: 2024
Historically, fire has been essential in Southwestern US forests. However, a century of fire-exclusion and changing climate created forests which are more susceptible to uncharacteristically severe wildfires. Forest managers use a combination of thinning and prescribed burning to reduce forest density to help mitigate the risk of high-severity fires. These treatments are laborious and expensive, therefore optimizing their impact is crucial. Landscape simulation models can be useful in identifying high risk areas and assessing treatment effects, but uncertainties in these models can limit…
Publication Type: Journal Article
Future fire events are likely to be worse than climate projections indicate – these are some of the reasons why
Year: 2024
BackgroundClimate projections signal longer fire seasons and an increase in the number of dangerous fire weather days for much of the world including Australia.AimsHere we argue that heatwaves, dynamic fire–atmosphere interactions and increased fuel availability caused by drought will amplify potential fire behaviour well beyond projections based on calculations of afternoon forest fire danger derived from climate models.MethodsWe review meteorological dynamics contributing to enhanced fire behaviour during heatwaves, drawing on examples of…
Publication Type: Journal Article
An optimization model to prioritize fuel treatments within a landscape fuel break network
Year: 2024
We present a mixed integer programming model for prioritizing fuel treatments within a landscape fuel break network to maximize protection against wildfires, measured by the total fire size reduction or the sum of Wildland Urban Interface areas avoided from burning. This model uses a large dataset of simulated wildfires in a large landscape to inform fuel break treatment decisions. Its mathematical formulation is concise and computationally efficient, allowing for customization and expansion to address more complex and challenging fuel break management problems in diverse landscapes. We…
Publication Type: Journal Article
Mortality Burden From Wildfire Smoke Under Climate Change
Year: 2024
Wildfire activity has increased in the US and is projected to accelerate under future climate change. However, our understanding of the impacts of climate change on wildfire smoke and health remains highly uncertain. We quantify the past and future mortality burden in the US due to wildfire smoke fine particulate matter (PM2.5). We construct an ensemble of statistical and machine learning models that link variation in climate to wildfire smoke PM2.5, and empirically estimate smoke PM2.5-mortality relationships using georeferenced data on all recorded deaths in the US from 2006 to 2019. We…
Publication Type: Report
Wildfire Smoke Exposure and Incident Dementia
Year: 2024
Importance: Long-term exposure to total fine particulate matter (PM2.5) is a recognized dementia risk factor, but less is known about wildfire-generated PM2.5, an increasingly common PM2.5 source. Objective: To assess the association between long-term wildfire and nonwildfire PM2.5 exposure and risk of incident dementia. Design, Setting, and Participants: This open cohort study was conducted using January 2008 to December 2019 electronic health record (EHR) data among members of Kaiser Permanente Southern California (KPSC), which serves…
Publication Type: Journal Article
Near-term fire weather forecasting in the Pacific Northwest using 500-hPa map types
Year: 2024
BackgroundNear-term forecasts of fire danger based on predicted surface weather and fuel dryness are widely used to support the decisions of wildfire managers. The incorporation of synoptic-scale upper-air patterns into predictive models may provide additional value in operational forecasting.AimsIn this study, we assess the impact of synoptic-scale upper-air patterns on the occurrence of large wildfires and widespread fire outbreaks in the US Pacific Northwest. Additionally, we examine how discrete upper-air map types can augment subregional models of…
Publication Type: Journal Article
A Wildfire Progression Simulation and Risk-Rating Methodology for Power Grid Infrastructure
Year: 2024
As the frequency and intensity of power line-induced wildfires increase due to climate-, human- , and infrastructure-related risk drivers, maintaining power system resilience and reducing environmental impacts become increasingly crucial. This paper presents a comprehensive methodology to assess the susceptibility, vulnerability, and risk of power line-induced wildfires for lines and nodes in an electric grid. The methodology integrates a well-established wildfire spread simulator into power flow analysis through a set of analytical steps. The proposed approach is applied to a case study…
Publication Type: Journal Article
A model for rapid PM2.5 exposure estimates in wildfire conditions using routinely available data: rapidfire v0.1.3
Year: 2024
Urban smoke exposure events from large wildfires have become increasingly common in California and throughout the western United States. The ability to study the impacts of high smoke aerosol exposures from these events on the public is limited by the availability of high-quality, spatially resolved estimates of aerosol concentrations. Methods for assigning aerosol exposure often employ multiple data sets that are time-consuming to create and difficult to reproduce. As these events have gone from occasional to nearly annual in frequency, the need for rapid smoke exposure assessments has…
Publication Type: Journal Article
Western larch regeneration more sensitive to wildfire-related factors than seasonal climate variability
Year: 2024
To understand the impacts of changing climate and wildfire activity on conifer forests, we studied how wildfire and post-fire seasonal climate conditions influence western larch (Larix occidentalis) regeneration across its range in the northwestern US. We destructively sampled 1651 seedlings from 57 sites across 32 fires that burned at moderate or high severity between 2000 and 2015; sites were within 100 m of reproductively mature western larch. Using dendrochronological methods, we estimated germination years of seedlings to calculate annual recruitment rates. We used boosted…
Publication Type: Journal Article
Global rise in forest fire emissions linked to climate change in the extratropics
Year: 2024
Climate change increases fire-favorable weather in forests, but fire trends are also affected by multiple other controlling factors that are difficult to untangle. We use machine learning to systematically group forest ecoregions into 12 global forest pyromes, with each showing distinct sensitivities to climatic, human, and vegetation controls. This delineation revealed that rapidly increasing forest fire emissions in extratropical pyromes, linked to climate change, offset declining emissions in tropical pyromes during 2001 to 2023. Annual emissions tripled in one extratropical pyrome due to…
Publication Type: Journal Article
Clearing the air: evaluating institutions’ social media health messaging on wildfire and smoke risks in the US Pacific Northwest
Year: 2024
BackgroundWildfire smoke contributes substantially to the global disease burden and is a major cause of air pollution in the US states of Oregon and Washington. Climate change is expected to bring more wildfires to this region. Social media is a popular platform for health promotion and a need exists for effective communication about smoke risks and mitigation measures to educate citizens and safeguard public health.MethodsUsing a sample of 1,287 Tweets from 2022, we aimed to analyze temporal Tweeting patterns in relation to potential smoke exposure and evaluate and compare institutions’ use…
Publication Type: Journal Article
Metals in Wildfire Suppressants
Year: 2024
Frequent and severe wildfires have led to increased application of fire suppression products (long-term fire retardants, water enhancers, and Class A foams) in the American West. While fire suppressing products used on wildfires must be approved by theU.S. Forest Service, portions of their formulations are trade secrets.Increased metals content in soils and surface waters at the wildland-urban interface has been observed after wildfires but has primarily been attributed to ash deposition or anthropogenic impact from nearby urban areas. In this study, metal concentrations in several fire…
Publication Type: Journal Article
Five social and ethical considerations for using wildfire visualizations as a communication tool
Year: 2024
BackgroundIncreased use of visualizations as wildfire communication tools with public and professional audiences—particularly 3D videos and virtual or augmented reality—invites discussion of their ethical use in varied social and temporal contexts. Existing studies focus on the use of such visualizations prior to fire events and commonly use hypothetical scenarios intended to motivate proactive mitigation or explore decision-making, overlooking the insights that those who have already experienced fire events can provide to improve user engagement and understanding of wildfire…
Publication Type: Journal Article
Visibility-informed mapping of potential firefighter lookout locations using maximum entropy modelling
Year: 2024
BackgroundSituational awareness is an essential component of wildland firefighter safety. In the US, crew lookouts provide situational awareness by proxy from ground-level locations with visibility of both fire and crew members.AimsTo use machine learning to predict potential lookout locations based on incident data, mapped visibility, topography, vegetation, and roads.MethodsLidar-derived topographic and fuel structural variables were used to generate maps of visibility across 30 study areas that possessed lookout location data. Visibility…
Publication Type: Journal Article
Wildfire management decisions outweigh mechanical treatment as the keystone to forest landscape adaptation
Year: 2024
BackgroundModern land management faces unprecedented uncertainty regarding future climates, novel disturbance regimes, and unanticipated ecological feedbacks. Mitigating this uncertainty requires a cohesive landscape management strategy that utilizes multiple methods to optimize benefits while hedging risks amidst uncertain futures. We used a process-based landscape simulation model (LANDIS-II) to forecast forest management, growth, climate effects, and future wildfire dynamics, and we distilled results using a decision support tool allowing us to examine tradeoffs between alternative…
Publication Type: Journal Article