Skip to main content

wildfire and water

Displaying 1 - 10 of 28

Mobile radar provides insights into hydrologic responses in burn areas

Year of Publication
2025
Publication Type

Background. Wildfires often occur in mountainous terrain, regions that pose substantial challenges to operational meteorological and hydrologic observing networks. Aims. A mobile, postfire hydrometeorological observatory comprising remote-sensing and in situ instrumentation was developed and deployed in a burnt area to provide unique insights into rainfall-induced post-fire hazards. Methods.

Designing Burn Windows for Integrated Fire Management in Wetlands: Why Should Flooding Not Be Overlooked?

Year of Publication
2025
Publication Type

Changes in natural wildfire patterns can cause significant impacts on biodiversity, health, and economies. This has sparked discussions on better fire management. One strategy used by countries is Integrated Fire Management (IFM), with prescribed burning as one of the main tools. Prescribed burns effectively depend on specific burn windows.

Before the fire: predicting burn severity and potential post-fire debris-flow hazards to conservation populations of the Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus)

Year of Publication
2024
Publication Type

Background: Colorado River Cutthroat Trout (CRCT; Oncorhynchus clarkii pleuriticus) conservation populations may be at risk from wildfire and post-fire debris flows hazards. Aim: To predict burn severity and potential post-fire debris flow hazard classifications to CRCT conservation populations before wildfires occur.

Metals in Wildfire Suppressants

Year of Publication
2024
Publication Type

Frequent and severe wildfires have led to increased application of fire suppression products (long-term fire retardants, water enhancers, and Class A foams) in the American West. While fire suppressing products used on wildfires must be approved by theU.S.

Stream chemical response is mediated by hydrologic connectivity and fire severity in a Pacific Northwest forest

Year of Publication
2024
Publication Type

Large-scale wildfires are becoming increasingly common in the wet forests of the Pacific Northwest (USA), with predicted increases in fire prevalence under future climate scenarios. Wildfires can alter streamflow response to precipitation and mobilize water quality constituents, which pose a risk to aquatic ecosystems and downstream drinking water treatment.

Lightning-Ignited Wildfires in the Western United States: Ignition Precipitation and Associated Environmental Conditions

Year of Publication
2023
Publication Type
Cloud-to-ground lightning with minimal rainfall (“dry” lightning) is a major wildfire ignition source in the western United States (WUS). Although dry lightning is commonly defined as occurring with <2.5 mm of daily-accumulated precipitation, a rigorous quantification of precipitation amounts concurrent with lightning-ignited wildfires (LIWs) is lacking.