Research Database
Displaying 1 - 12 of 12
Increasing wildfire frequency decreases carbon storage and leads to regeneration failure in Alaskan boreal forests
Year: 2025
BackgroundThe increasing size, severity, and frequency of wildfires is one of the most rapid ways climate warming could alter the structure and function of high-latitude ecosystems. Historically, boreal forests in western North America had fire return intervals (FRI) of 70–130 years, but shortened FRIs are becoming increasingly common under extreme weather conditions. Here, we quantified pre-fire and post-fire C pools and C losses and assessed post-fire seedling regeneration in long (> 70 years), intermediate (30–70 years), and short (< 30 years) FRIs, and triple (three fires in < 70…
Publication Type: Journal Article
Going slow to go fast: landscape designs to achieve multiple benefits
Year: 2025
Introduction: Growing concerns about fire across the western United States, and commensurate emphasis on treating expansive areas over the next 2 decades, have created a need to develop tools for managers to assess management benefits and impacts across spatial scales. We modeled outcomes associated with two common forest management objectives: fire risk reduction (fire), and enhancing multiple resource benefits (ecosystem resilience).Method: We evaluated the compatibility of these two objectives across ca. 1-million ha in the central Sierra Nevada,…
Publication Type: Journal Article
Multi-scale assessment of wildfire use on carbon stocks in the Sierra Nevada, CA
Year: 2025
BackgroundThe active use of wildfire to meet forest management objectives is an important tool to increase the scale of forest restoration in dry, historically frequent-fire forests. While there are many benefits of reintroducing fire to these forests, the impact of wildland fire use policies in frequent-fire forests on aboveground carbon stocks has not yet been studied. In this study, we begin to fill this knowledge gap by assessing how fire frequency and severity affected aboveground carbon dynamics in two basins in the Sierra Nevada with a history of wildfire use over the…
Publication Type: Journal Article
The western North American forestland carbon sink: will our climate commitments go up in smoke?
Year: 2025
Pathways to achieving net-zero and net-negative greenhouse-gas (GHG) emission targets rely on land-based contributions to carbon (C) sequestration. However, projections of future contributions neglect to consider ecosystems, climate change, legacy impacts of continental-scale fire exclusion, forest accretion and densification, and a century or more of management. These influences predispose western North American forests (wNAFs) to severe drought impacts, large and chronic outbreaks of insect pests, and increasingly large and severe wildfires. To realistically assess contributions of future…
Publication Type: Journal Article
Carbon costs of different pathways for reducing fire hazard in the Sierra Nevada
Year: 2025
Restoring a low-intensity, frequent-fire regime in fire-prone forests offers a promising natural climate solution. Management interventions that include prescribed fire and/or mechanical treatments have effectively reduced fire hazards in the Western United States, yet concerns remain regarding their impact on forest carbon storage. This study used results from a long-term, replicated field experiment to assess the impacts of a restored disturbance regime on carbon dynamics in a Sierra Nevada, mixed conifer forest. The carbon consequences of the treatments were compared to a dynamic baseline…
Publication Type: Journal Article
Wildfires drive multi-year water quality degradation over the western United States
Year: 2025
Wildfires can dramatically alter water quality, resulting in severe implications for human and freshwater systems. However, regional-scale assessments of these impacts are often limited by data scarcity. Here, we unify observations from 1984–2021 in 245 burned watersheds across the western United States, comparing post-fire signals to baseline levels from 293 unburned basins. Organic carbon and phosphorus exhibit significantly elevated levels (p ≤ 0.05) in the first 1–5 years post-fire, while nitrogen and sediment show significant increases up to 8 years post-fire. During peak post-…
Publication Type: Journal Article
Decreasing landscape carbon storage in western US forests with 2 °C of warming
Year: 2025
Changing climate is altering the amount of carbon that can be sustained in forest ecosystems. Increasing heat and drought is already causing increased mortality and decreased regeneration in some locations. These changes have implications for landscape carbon storage with ongoing climate change. We used a climate analogs approach to project aboveground forest carbon density under +2 °C warming above pre-industrial climate for western US forests. We calculated analogs for current climate and under +2 °C warming and associated carbon density for each time period. We found that in most…
Publication Type: Journal Article
Quantifying Western US tree carbon stocks and sequestration from fires
Year: 2025
Background: Forest ecosystems function as the largest terrestrial carbon sink globally. In the Western US, fires play a crucial role in modifying forest carbon storage, sequestration capacity, and the transfer of carbon from live to dead carbon pools. We utilized remeasurements of more than 700,000 trees from 24,000 locations from the US Department of Agriculture Forest Service’s Forest Inventory and Analysis program (FIA) and incorporated supplementary information on wildfires from the Monitoring Trends in Burn Severity dataset. These datasets allowed us to develop models that examined the…
Publication Type: Journal Article
The influence of fire history on soil nutrients and vegetation cover in mixed-severity fire regime forests of the eastern Olympic Peninsula, Washington, USA
Year: 2018
The rain shadow forests of the Olympic Peninsula exemplify a mixed-severity fire regime class in the midst of a highly productive landscape where spatial heterogeneity of fire severity may have significant implications for below and aboveground post-fire recovery. The purpose of this study was to quantify the impacts of wildfire on forest soil carbon (C) and nitrogen (N) pools and assess the relationship of pyrogenic carbon (PyC) to soil processes in this mixed-severity ecosystem. We established a 112-year fire chronosequence with nine similar forest stands ranging in time since lastfire (TSF…
Publication Type: Journal Article
Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity
Year: 2018
Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the…
Publication Type: Journal Article
Pyro-Ecophysiology: Shifting the Paradigm of Live Wildland Fuel Research
Year: 2018
The most destructive wildland fires occur in mixtures of living and dead vegetation, yet very little attention has been given to the fundamental differences between factors that control their flammability. Historically, moisture content has been used to evaluate the relative flammability of live and dead fuels without considering major, unreported differences in the factors that control their variations across seasons and years. Physiological changes at both the leaf and whole plant level have the potential to explain ignition and fire behavior phenomena in live fuels that have been poorly…
Publication Type: Journal Article
Recovery of ectomycorrhizal fungus communities fifteen years after fuels reduction treatments in ponderosa pine forests of the Blue Mountains, Oregon
Year: 2018
Managers use restorative fire and thinning for ecological benefits and to convert fuel-heavy forests to fuel-lean landscapes that lessen the threat of stand-replacing wildfire. In this study, we evaluated the long-term impact of thinning and prescribed fire on soil biochemistry and the mycorrhizal fungi associated with ponderosa pine (Pinus ponderosa). Study sites were located in the Blue Mountains of northeastern Oregon where prescribed fire treatments implemented in 1998 and thinning treatments in 2000 included prescribed fire, mechanical thinning of forested areas, a combination of…
Publication Type: Journal Article