Background
The increasing size, severity, and frequency of wildfires is one of the most rapid ways climate warming could alter the structure and function of high-latitude ecosystems. Historically, boreal forests in western North America had fire return intervals (FRI) of 70–130 years, but shortened FRIs are becoming increasingly common under extreme weather conditions. Here, we quantified pre-fire and post-fire C pools and C losses and assessed post-fire seedling regeneration in long (> 70 years), intermediate (30–70 years), and short (< 30 years) FRIs, and triple (three fires in < 70 years) burns. As boreal forests store a significant portion of the global terrestrial carbon (C) pool, understanding the impacts of shortened FRIs on these ecosystems is critical for predicting the global C balance and feedbacks to climate.
Results
Using a spatially extensive dataset of 555 plots from 31 separate fires in Interior Alaska, our study demonstrates that shortened FRIs decrease the C storage capacity of boreal forests through loss of legacy C and regeneration failure. Total wildfire C emissions were similar among FRI classes, ranging from 2.5 to 3.5 kg C m−2. However, shortened FRIs lost proportionally more of their pre-fire C pools, resulting in substantially lower post-fire C pools than long FRIs. Shortened FRIs also resulted in the combustion of legacy C, defined as C that escaped combustion in one or more previous fires. We found that post-fire successional trajectories were impacted by FRI, with ~ 65% of short FRIs and triple burns experiencing regeneration failure.
Conclusions
Our study highlights the structural and functional vulnerability of boreal forests to increasing fire frequency. Shortened FRIs and the combustion of legacy C can shift boreal ecosystems from a net C sink or neutral to a net C source to the atmosphere and increase the risk of transitions to non-forested states. These changes could have profound implications for the boreal C-climate feedback and underscore the need for adaptive management strategies that prioritize the structural and functional resilience of boreal forest ecosystems to expected increases in fire frequency.
Walker, X.J., Mack, M.C., Black, B. et al. Increasing wildfire frequency decreases carbon storage and leads to regeneration failure in Alaskan boreal forests. fire ecol 21, 57 (2025). https://doi.org/10.1186/s42408-025-00390-3