Research Database
Displaying 1 - 11 of 11
Parcel-Level Risk Affects Wildfire Outcomes: Insights from Pre-Fire Rapid Assessment Data for Homes Destroyed in 2020 East Troublesome Fire
Year: 2024
Parcel-level risk (PLR) describes how wildfire risk varies from home to home based on characteristics that relate to likely fire behavior, the susceptibility of homes to fire, and the ability of firefighters to safely access properties. Here, we describe the WiRē Rapid Assessment (RA), a parcel-level rapid wildfire risk assessment tool designed to evaluate PLR with a small set of measures for all homes in a community. We investigate the relationship between 2019 WiRē RA data collected in the Columbine Lake community in Grand County, Colorado, and whether assessed homes were destroyed in the…
Publication Type: Journal Article
Managing fire-prone forests in a time of decreasing carbon carrying capacity
Year: 2024
Changing climatic conditions are increasing overstory tree mortality in forests globally. This restructuring of the distribution of biomass is making already flammable forests more combustible, posing a major challenge for managing the transition to a lower biomass state. In western US dry conifer forests, tree density resulting from over a century of fire-exclusion practices has increased the risk of high-severity wildfire and susceptibility to climate-driven mortality. Reducing dead fuel loads will require new approaches to mitigate risk to the remaining live trees by preparing forests to…
Publication Type: Journal Article
Climate change mitigation-adaptation relationships in forest management: perspectives from the fire-prone American West
Year: 2024
Minimizing negative impacts of climate change on human and natural systems requires mitigation of greenhouse gas emissions and adaptation to new climate conditions. Forestry provides grounds to study the relationship between these two concepts: carbon flux and storage are ecosystem services of forests, while forests are growing increasingly vulnerable to climate-driven disturbances. We examined the practice and interplay of mitigation and adaptation in the American West, which is a testbed for the conceptual balance between carbon cycling and growing climate-related risk given its abundance…
Publication Type: Journal Article
The Efficacy of Red Flag Warnings in Mitigating Human-Caused Wildfires across the Western United States
Year: 2024
Red flag warnings (RFWs) are issued by the U.S. National Weather Service to alert fire and emergency response agencies of weather conditions that are conducive to extreme wildfire growth. Distinct from most weather warnings that aim to reduce exposure to anticipated hazards, RFWs may also mitigate hazards by reducing the occurrence of new ignitions. We examined the efficacy of RFWs as a means of limiting human-caused wildfire ignitions. From 2006 to 2020, approximately 8% of wildfires across the western United States and 19% of large wildfires (≥40 ha) occurred on days with RFWs. Although the…
Publication Type: Journal Article
Informing proactive wildfire management that benefits vulnerable communities and ecological values
Year: 2024
- In response to mounting wildfire risks, land managers across the country will need to dramatically increase proactive wildfire management (e.g. fuel and forest health treatments). While human communities vary widely in their vulnerability to the impacts of fire, these discrepancies have rarely informed prioritizations for wildfire mitigation treatments. The ecological values and ecosystem services provided by forests have also typically been secondary considerations.
- To identify locations across the conterminous US where proactive wildfire management is likely to be effective…
Publication Type: Journal Article
Carbon, climate, and natural disturbance: a review of mechanisms, challenges, and tools for understanding forest carbon stability in an uncertain future
Year: 2024
In this review, we discuss current research on forest carbon risk from natural disturbance under climate change for the United States, with emphasis on advancements in analytical mapping and modeling tools that have potential to drive research for managing future long-term stability of forest carbon. As a natural mechanism for carbon storage, forests are a critical component of meeting climate mitigation strategies designed to combat anthropogenic emissions. Forests consist of long-lived organisms (trees) that can store carbon for centuries or more. However, trees have finite lifespans, and…
Publication Type: Journal Article
Stream chemical response is mediated by hydrologic connectivity and fire severity in a Pacific Northwest forest
Year: 2024
Large-scale wildfires are becoming increasingly common in the wet forests of the Pacific Northwest (USA), with predicted increases in fire prevalence under future climate scenarios. Wildfires can alter streamflow response to precipitation and mobilize water quality constituents, which pose a risk to aquatic ecosystems and downstream drinking water treatment. Research often focuses on the impacts of high-severity wildfires, with stream biogeochemical responses to low- and mixed-severity fires often understudied, particularly during seasonal shifts in hydrologic connectivity between hillslopes…
Publication Type: Journal Article
Quantifying Aspect-Dependent Snowpack Response to High-Elevation Wildfire in the Southern Rocky Mountains
Year: 2024
Increasing wildfire frequency and severity in high-elevation seasonal snow zones presents a considerable water resource management challenge across the western United States (U.S.). Wildfires can affect snowpack accumulation and melt patterns, altering the quantity and timing of runoff. While prior research has shown that wildfire generally increases snow melt rates and advances snow disappearance dates, uncertainties remain regarding variations across complex terrain and the energy balance between burned and unburned areas. Utilizing paired in situ data sources within the 2020 Cameron Peak…
Publication Type: Journal Article
Metals in Wildfire Suppressants
Year: 2024
Frequent and severe wildfires have led to increased application of fire suppression products (long-term fire retardants, water enhancers, and Class A foams) in the American West. While fire suppressing products used on wildfires must be approved by theU.S. Forest Service, portions of their formulations are trade secrets.Increased metals content in soils and surface waters at the wildland-urban interface has been observed after wildfires but has primarily been attributed to ash deposition or anthropogenic impact from nearby urban areas. In this study, metal concentrations in several fire…
Publication Type: Journal Article
Before the fire: predicting burn severity and potential post-fire debris-flow hazards to conservation populations of the Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus)
Year: 2024
Background: Colorado River Cutthroat Trout (CRCT; Oncorhynchus clarkii pleuriticus) conservation populations may be at risk from wildfire and post-fire debris flows hazards. Aim: To predict burn severity and potential post-fire debris flow hazard classifications to CRCT conservation populations before wildfires occur. Methods: We used remote sensing, spatial analyses, and machine learning to model 28 wildfire incidents (2016–2020) and spatially predict burn severity from pre-wildfire environmental factors to evaluate the likelihood…
Publication Type: Journal Article
A laboratory-scale simulation framework for analysing wildfire hydrologic and water quality effects
Year: 2024
Background: Wildfires can significantly impact water quality and supply. However logistical difficulties and high variability in in situ data collection have limited previous analyses.Aims: We simulated wildfire and rainfall effects at varying terrain slopes in a controlled setting to isolate driver-response relationships.Methods: Custom-designed laboratory-scale burn and rainfall simulators were applied to 154 soil samples, measuring subsequent runoff and constituent responses. Simulated conditions included low, moderate, and high burn intensities (~100–600°C); 10…
Publication Type: Journal Article