Research Database
Displaying 41 - 60 of 195
Rare and highly destructive wildfires drive human migration in the U.S.
Year: 2024
The scale of wildfire impacts to the built environment is growing and will likely continue under rising average global temperatures. We investigate whether and at what destruction threshold wildfires have influenced human mobility patterns by examining the migration effects of the most destructive wildfires in the contiguous U.S. between 1999 and 2020. We find that only the most extreme wildfires (258+ structures destroyed) influenced migration patterns. In contrast, the majority of wildfires examined were less destructive and did not cause significant changes to out- or in-migration. These…
Economic Impacts of Fire, Public Perceptions of Fire and Smoke, Social and Community Impacts of Fire
Publication Type: Journal Article
A Review of the Occurrence and Causes for Wildfires and Their Impacts on the Geoenvironment
Year: 2024
Wildfires have short- and long-term impacts on the geoenvironment, including the changes to biogeochemical and mechanical properties of soils, landfill stability, surface- and groundwater, air pollution, and vegetation. Climate change has increased the extent and severity of wildfires across the world. Simultaneously, anthropogenic activities—through the expansion of urban areas into wildlands, abandonment of rural practices, and accidental or intentional fire-inception activities—are also responsible for a majority of fires. This paper provides an overall review and critical appraisal of…
Climate Change and Fire, Fire Effects and Fire Ecology, Smoke and Air Quality, Soils and Woody Debris
Publication Type: Journal Article
Landsat assessment of variable spectral recovery linked to post-fire forest structure in dry sub-boreal forests
Year: 2024
Forest disturbances such as wildfires can dramatically alter forest structure and composition, increasing the likelihood of ecosystem changes. Up-to-date and accurate measures of post-disturbance forest recovery in managed forests are critical, particularly for silvicultural planning. Measuring the live and dead vegetation post-fire is challenging because areas impacted by wildfire may be remote, difficult to access, and/or dangerous to survey. The difficulties of post-fire monitoring are compounded by the global increase in the frequency and severity of disturbances, as expansion of…
Publication Type: Journal Article
Moderating effects of past wildfire on reburn severity depend on climate and initial severity in Western US forests
Year: 2024
Rising global fire activity is increasing the prevalence of repeated short-interval burning (reburning) in forests worldwide. In forests that historically experienced frequent-fire regimes, high-severity fire exacerbates the severity of subsequent fires by increasing prevalence of shrubs and/or by creating drier understory conditions. Low- to moderate-severity fire, in contrast, can moderate future fire behavior by reducing fuel loads. The extent to which previous fires moderate future fire severity will powerfully affect fire-prone forest ecosystem trajectories over the next century. Further…
Publication Type: Journal Article
‘Mind the Gap’—reforestation needs vs. reforestation capacity in the western United States
Year: 2024
Tree establishment following severe or stand-replacing disturbance is critical for achieving U.S. climate change mitigation goals and for maintaining the co-benefits of intact forest ecosystems. In many contexts, natural post-fire tree regeneration is sufficient to maintain forest cover and associated ecosystem services, but increasingly the pattern and scale of disturbance exceeds ecological thresholds and active reforestation may be warranted. Our capacity to plant trees, however, is not keeping pace with reforestation needs. This shortfall is uniquely apparent in the western U.S., where…
Publication Type: Journal Article
Disentangling drivers of annual grass invasion: Abiotic susceptibility vs. fire-induced conversion to cheatgrass dominance in the sagebrush biome
Year: 2024
Invasive annual grasses are often facilitated by fire, yet they can become ecologically dominant in susceptible locations even in the absence of fire. We used an extensive vegetation plot database to model susceptibility to the invasive annual grass cheatgrass (Bromus tectorum L.) in the sagebrush biome as a function of climate and soil water availability variables. We built random forest models predicting cheatgrass presence or dominance (>15 % relative cover) under unburned (37,219 plots) and burned conditions (6340 plots). We mapped predicted probability of cheatgrass…
Publication Type: Journal Article
Near-term fire weather forecasting in the Pacific Northwest using 500-hPa map types
Year: 2024
BackgroundNear-term forecasts of fire danger based on predicted surface weather and fuel dryness are widely used to support the decisions of wildfire managers. The incorporation of synoptic-scale upper-air patterns into predictive models may provide additional value in operational forecasting.AimsIn this study, we assess the impact of synoptic-scale upper-air patterns on the occurrence of large wildfires and widespread fire outbreaks in the US Pacific Northwest. Additionally, we examine how discrete upper-air map types can augment subregional models of…
Publication Type: Journal Article
Drought before fire increases tree mortality after fire
Year: 2024
Fire and drought are expected to increase in frequency and severity in temperate forests due to climate change. To evaluate whether drought increases the likelihood of post-fire tree mortality, we used a large database of tree survival and mortality from 32 years of wildland fires covering four dominant western North American conifers. We used Bayesian hierarchical modeling to predict the probability of individual tree mortality after fire based on species—Pinus contorta (lodgepole pine), Abies concolor (white fir), Pseudotsuga menziesii (Douglas-fir), and Pinus…
Publication Type: Journal Article
Fire severity drives understory community dynamics and the recovery of culturally significant plants
Year: 2024
Anthropogenic influences are altering fire regimes worldwide, resulting in an increase in the size and severity of wildfires. Simultaneously, throughout western North America, there is increasing recognition of the important role of Indigenous fire stewardship in shaping historical fire regimes and fire-adapted ecosystems. However, there is limited understanding of how ecosystems are affected by or recover from contemporary “megafires,” particularly in terms of understory plant communities that are critical to both biodiversity and Indigenous cultures. To address this gap, our collaborative…
Publication Type: Journal Article
Human driven climate change increased the likelihood of the 2023 record area burned in Canada
Year: 2024
In 2023, wildfires burned 15 million hectares in Canada, more than doubling the previous record. These wildfires caused a record number of evacuations, unprecedented air quality impacts across Canada and the northeastern United States, and substantial strain on fire management resources. Using climate models, we show that human-induced climate change significantly increased the likelihood of area burned at least as large as in 2023 across most of Canada, with more than two-fold increases in the east and southwest. The long fire season was more than five times as likely and the large areas…
Publication Type: Journal Article
Prescribed fire increases forage mineral content in grazed rangeland
Year: 2024
BackgroundSustainable rangeland management balances production and conservation. While a broad literature describes the conservation benefits of prescribed fire, benefits for livestock production have emerged more slowly. Mineral nutrition is important for livestock health and performance, but the impact of prescribed fire on mineral concentration of forages, especially in the northern US Great Plains, remains unknown.AimsWe investigated how burning affects the mineral concentration of forage early and late in the growing season.MethodsData…
Publication Type: Journal Article
Forest thinning and prescribed burning treatments reduce wildfire severity and buffer the impacts of severe fire weather
Year: 2024
BackgroundThe capacity of forest fuel treatments to moderate the behavior and severity of subsequent wildfires depends on weather and fuel conditions at the time of burning. However, in-depth evaluations of how treatments perform are limited because encounters between wildfires and areas with extensive pre-fire data are rare. Here, we took advantage of a 1200-ha randomized and replicated experiment that burned almost entirely in a subsequent wildfire under a wide range of weather conditions. We compared the impacts of four fuel treatments on fire severity, including two thin-only, a thin-burn…
Publication Type: Journal Article
Pile burns as a proxy for high severity wildfire impacts on soil microbiomes
Year: 2024
Wildfires in the western US are increasing in frequency, size, and severity. These disturbances alter soil microbiome structure and function, with greater fire severity leading to more pronounced impacts to bacterial, archaeal, and fungal communities. These changes have implications for the provisioning of microbially-mediated ecosystem services (e.g., carbon sequestration, clean water supplies) typically associated with forested watersheds. Challenges in sampling wildfire-impacted areas immediately post-burn have limited our assessment of short-term (i.e., days to weeks) changes in the soil…
Publication Type: Journal Article
The Interannual Variability of Global Burned Area Is Mostly Explained by Climatic Drivers
Year: 2024
Better understanding how fires respond to climate variability is an issue of current interest in light of ongoing climate change. However, evaluating the global-scale temporal variability of fires in response to climate presents a challenge due to the intricate processes at play and the limitation of fire data. Here, we investigate the links between year-to-year variability of burned area (BA) and climate using BA data, the Fire Weather Index (FWI), and the Standardized Precipitation Evapotranspiration Index (SPEI) from 2001 to 2021 at ecoregion scales. Our results reveal complex spatial…
Publication Type: Journal Article
Climate limits vegetation green-up more than slope, soil erodibility, and immediate precipitation following high-severity wildfire
Year: 2024
BackgroundIn the southwestern United States, post-fire vegetation recovery is increasingly variable in forest burned at high severity. Many factors, including temperature, drought, and erosion, can reduce post-fire vegetation recovery rates. Here, we examined how year-of-fire precipitation variability, topography, and soils influenced post-fire vegetation recovery in the southwestern United States as measured by greenness to determine whether erosion-related factors would have persistent effects in the longer post-fire period. We modeled relationships between post-fire vegetation and these…
Publication Type: Journal Article
Trees have similar growth responses to first-entry fires and reburns following long-term fire exclusion
Year: 2024
Managing fire ignitions for resource benefit decreases fuel loads and reduces the risk of high-severity fire in fire-suppressed dry conifer forests. However, the reintroduction of low-severity wildfire can injure trees, which may decrease their growth after fire. Post-fire growth responses could change from first-entry fires to reburns, as first-entry fires reduce fuel loads and the vulnerability among trees to fire effects, which may result in trees sustaining less damage during reburns. To determine whether trees had growth responses that varied from first-entry fires to reburns, we cored…
Publication Type: Journal Article
Record-breaking fire weather in North America in 2021 was initiated by the Pacific northwest heat dome
Year: 2024
The 2021 North American wildfire season was marked by record breaking fire-conducive weather and widespread synchronous burning, extreme fire behaviour, smoke and evacuations. Relative to 1979–2021, the greatest number of temperature and vapor pressure deficit records were broken in 2021, and in July alone, 3.2 million hectares burned in Canada and the United States. These events were catalyzed by an intense heat dome that formed in late June over western North America that synchronized fire danger, challenging fire suppression efforts. Based on analysis of persistent positive anomalies of…
Publication Type: Journal Article
Before the fire: predicting burn severity and potential post-fire debris-flow hazards to conservation populations of the Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus)
Year: 2024
Background: Colorado River Cutthroat Trout (CRCT; Oncorhynchus clarkii pleuriticus) conservation populations may be at risk from wildfire and post-fire debris flows hazards. Aim: To predict burn severity and potential post-fire debris flow hazard classifications to CRCT conservation populations before wildfires occur. Methods: We used remote sensing, spatial analyses, and machine learning to model 28 wildfire incidents (2016–2020) and spatially predict burn severity from pre-wildfire environmental factors to evaluate the likelihood…
Publication Type: Journal Article
Association of social vulnerability factors with power outage burden in Washington state: 2018–2021
Year: 2024
Major power outages have risen over the last two decades, largely due to more extreme weather conditions. However, there is a lack of knowledge on the distribution of power outages and its relationship to social vulnerability and co-occurring hazards. We examined the associations between localized outages and social vulnerability factors (demographic characteristics), controlling for environmental factors (weather), in Washington State between 2018–2021. We additionally analyzed the validity of PowerOutage.us data compared to federal datasets. The population included 27 counties served by 14…
Publication Type: Journal Article
Western larch regeneration more sensitive to wildfire-related factors than seasonal climate variability
Year: 2024
To understand the impacts of changing climate and wildfire activity on conifer forests, we studied how wildfire and post-fire seasonal climate conditions influence western larch (Larix occidentalis) regeneration across its range in the northwestern US. We destructively sampled 1651 seedlings from 57 sites across 32 fires that burned at moderate or high severity between 2000 and 2015; sites were within 100 m of reproductively mature western larch. Using dendrochronological methods, we estimated germination years of seedlings to calculate annual recruitment rates. We used boosted…
Publication Type: Journal Article