Research Database
Displaying 41 - 60 of 91
The missing fire: quantifying human exclusion of wildfire in Pacific Northwest forests, USA
Year: 2019
Western U.S. wildfire area burned has increased dramatically over the last half‐century. How contemporary extent and severity of wildfires compare to the pre‐settlement patterns to which ecosystems are adapted is debated. We compared large wildfires in Pacific Northwest forests from 1984 to 2015 to modeled historic fire regimes. Despite late twentieth‐century increases in area burned, we show that Pacific Northwest forests have experienced an order of magnitude less fire over 32 yr than expected under historic fire regimes. Within fires that have burned, severity distributions are…
Publication Type: Journal Article
Severe Fire Danger Index: A Forecastable Metric to Inform Firefighter and Community Wildfire Risk Management
Year: 2019
Despite major advances in numerical weather prediction, few resources exist to forecast wildland fire danger conditions to support operational fire management decisions and community early-warning systems. Here we present the development and evaluation of a spatial fire danger index that can be used to assess historical events, forecast extreme fire danger, and communicate those conditions to both firefighters and the public. It uses two United States National Fire Danger Rating System indices that are related to fire intensity and spread potential. These indices are normalized, combined, and…
Publication Type: Journal Article
Human-related ignitions concurrent with high winds promote large wildfires across the USA
Year: 2018
Large wildfires (>40 ha) account for the majority of burned area across the contiguous United States (US) and appropriate substantial suppression resources. A variety of environmental and social factors influence wildfire growth and whether a fire overcomes initial attack efforts and becomes a large wildfire. However, little is known about how these factors differ between lightning-caused and human-caused wildfires. This study examines differences in temperature, vapour pressure deficit, fuel moisture and wind speed for large and small lightning- and human-caused wildfires during the…
Publication Type: Journal Article
Advancing Dendrochronological Studies of Fire in the United States
Year: 2018
Dendroecology is the science that dates tree rings to their exact calendar year of formation to study processes that influence forest ecology (e.g., Speer 2010 [1], Amoroso et al., 2017 [2]). Reconstruction of past fire regimes is a core application of dendroecology, linking fire history to population dynamics and climate effects on tree growth and survivorship. Since the early 20th century when dendrochronologists recognized that tree rings retained fire scars (e.g., Figure 1), and hence a record of past fires, they have conducted studies worldwide to reconstruct [2] the historical range and…
Publication Type: Journal Article
Looking beyond the mean: Drivers of variability in postfire stand development of conifers in Greater Yellowstone
Year: 2018
High-severity, infrequent fires in forests shape landscape mosaics of stand age and structure for decades to centuries, and forest structure can vary substantially even among same-aged stands. This variability among stand structures can affect landscape-scale carbon and nitrogen cycling, wildlife habitat availability, and vulnerability to subsequent disturbances. We used an individual-based forest process model (iLand) to ask: Over 300 years of postfire stand development, how does variation in early regeneration densities versus abiotic conditions influence among-stand structural variability…
Publication Type: Journal Article
The Weather Conditions for Desired Smoke Plumes at a FASMEE Burn Site
Year: 2018
Weather is an important factor that determines smoke development, which is essential information for planning smoke field measurements. This study identifies the synoptic systems that would favor to produce the desired smoke plumes for the Fire and Smoke Model Evaluation Experiment (FASMEE). Daysmoke and PB-Piedmont (PB-P) models are used to simulate smoke plume evolution during the day time and smoke drainage and fog formation during the nighttime for hypothetical prescribed burns on 5–8 February 2011 at the Stewart Army Base in the southeastern United States. Daysmoke simulation is…
Publication Type: Journal Article
Wildfire and topography impacts on snow accumulation and retention in montane forests
Year: 2018
Wildfires are increasing in frequency, severity, and size in many parts of the world. Forest fires can fundamentally affect snowpack and watershed hydrology by restructuring forest composition and structure. Topography is an important factor in snowpack accumulation and ablation as it influences exposure to solar radiation and atmospheric conditions. Few direct measurements of post-fire snowpack have been taken and none to this date that evaluate how topographical aspect influences the effect of forest fire on snowpack accumulation and ablation. We set up a two-year experiment on the…
Publication Type: Journal Article
Regional and local controls on historical fire regimes of dry forests and woodlands in the Rogue River Basin, Oregon, USA
Year: 2018
Fire regimes structure plant communities worldwide with regional and local factors, including anthropogenic fire management, influencing fire frequency and severity. Forests of the Rogue River Basin in Oregon, USA, are both productive and fire-prone due to ample winter precipitation and summer drought; yet management in this region is strongly influenced by forest practices that depend on fire exclusion. Regionally, climate change is increasing fire frequency, elevating the importance of understanding historically frequent-fire regimes. We use cross-dated fire-scars to characterize historical…
Publication Type: Journal Article
Decreasing fire season precipitation increased recent western US forest wildfire activity
Year: 2018
Western United States wildfire increases have been generally attributed to warming temperatures, either through effects on winter snowpack or summer evaporation. However, near-surface air temperature and evaporative demand are strongly influenced by moisture availability and these interactions and their role in regulating fire activity have never been fully explored. Here we show that previously unnoted declines in summer precipitation from 1979 to 2016 across 31–45% of the forested areas in the western United States are strongly associated with burned area variations. The number of wetting…
Publication Type: Journal Article
High-severity fire: Evaluating its key drivers and mapping its probability across western US forests
Year: 2018
Wildland fire is a critical process in forests of the western United States (US). Variation in fire behavior, which is heavily influenced by fuel loading, terrain, weather, and vegetation type, leads to heterogeneity in fire severity across landscapes. The relative influence of these factors in driving fire severity, however, is poorly understood. Here, we explore the drivers of high-severity fire for forested ecoregions in the western US over the period 2002–2015. Fire severity was quantified using a satellite-inferred index of severity, the relativized burn ratio. For each ecoregion, we…
Publication Type: Journal Article
Prescribed Fire in Grassland Butterfly Habitat: Targeting Weather and Fuel Conditions to Reduce Soil Temperatures and Burn Severity
Year: 2017
Prescribed burning is a primary tool for habitat restoration and management in fire-adapted grasslands. Concerns about detrimental effects of burning on butterfly populations, however, can inhibit implementation of treatments. Burning in cool and humid conditions is likely to result in lowered soil temperatures and to produce patches of low burn severity, both of which would enhance survival of butterfly larvae at or near the soil surface. In this study, we burned 20 experimental plots in South Puget Sound, Washington, USA, prairies across a range of weather and fuel conditions to address the…
Publication Type: Journal Article
Towards improving wildland firefighter situational awareness through daily fire behaviour risk assessments in the US Northern Rockies and Northern Great Basin
Year: 2017
Wildland firefighters must assess potential fire behaviour in order to develop appropriate strategies and tactics that will safely meet objectives. Fire danger indices integrate surface weather conditions to quantify potential variations in fire spread rates and intensities and therefore should closely relate to observed fire behaviour. These indices could better inform fire management decisions if they were linked directly to observed fire behaviour. Here, we present a simple framework for relating fire danger indices to observed categorical wildland fire behaviour. Ordinal logistic…
Publication Type: Journal Article
Evidence of fuels management and fire weather influencing fire severity in an extreme fire event
Year: 2017
Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western U.S. Given this increase there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation and water balance on fire severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across…
Publication Type: Journal Article
Efficacy of resource objective wildfires for restoration of ponderosa pine (Pinus ponderosa) forests in northern Arizona
Year: 2017
Current conditions in dry forests of the western United State have given rise to policy mandates for accelerated ecological restoration on U.S. National Forest System and other public lands. In southwestern ponderosa pine (Pinus ponderosa Laws.) forests, mechanized tree thinning and prescribed fire are common restoration treatments but are not acceptable for all sites. Currently there is much interest in managing naturally ignited fires to accomplish restoration objectives but few studies have systematically examined the efficacy of such “resource objective” wildfires for restoring historical…
Publication Type: Journal Article
Did the 2002 Hayman Fire, Colorado, USA, Burn with Uncharacteristic Severity?
Year: 2016
There is considerable interest in evaluating whether recent wildfires in dry conifer forests of western North America are burning with uncharacteristic severity—that is, with a severity outside the historical range of variability. In 2002, the Hayman Fire burned an unlogged 3400 ha dry conifer forest landscape in the Colorado Front Range, USA, that had been the subject of previous fire history and forest age structure research. We opportunistically leveraged pre-existing data from this research, in combination with post-fire aerial imagery, to provide insight into whether the Hayman Fire’s…
Publication Type: Journal Article
REVIEW: Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services
Year: 2016
The provisioning of ecosystem services to society is increasingly under pressure from global change. Changing disturbance regimes are of particular concern in this context due to their high potential impact on ecosystem structure, function and composition. Resilience-based stewardship is advocated to address these changes in ecosystem management, but its operational implementation has remained challenging. We review observed and expected changes in disturbance regimes and their potential impacts on provisioning, regulating, cultural and supporting ecosystem services, concentrating on…
Publication Type: Journal Article
Increasing weight of evidence that thinning and burning treatments help restore understory plant communities in ponderosa pine forests
Year: 2015
For more than a century ecosystems around the world have experienced an increase in the dominance of woody species. While the drivers of woody plant proliferation are complex, interactions between climate and land-use change are commonly invoked as primary contributing factors. In ponderosa pine forests of western North America, substantial increases in tree densities are impacting overall forest health and increasing the risk for severe wildfires and insect and disease outbreaks. Addressing this problem through the use of ecological restoration projects is widely advocated. Our objective was…
Publication Type: Journal Article
The Fire Weather Accuracy and Lightning Ignition Probability System
Year: 2015
Weather forecasts can help identify environmental conditions conducive to prescribed burning or to increased fire danger. These conditions are important components of fire management tools such as fire ignition potential maps, fire danger rating systems, fire behavior predictions, and smoke dispersion modeling. Fire managers use these tools to make decisions on when to conduct prescribed burns, how to manage wildfires, and how to pre-position fire suppression forces. Forecast weather conditions provide variables such as temperature, relative humidity, solar radiation, precipitation (or lack…
Publication Type: Report
The Potential Impact of Regional Climate Change on Fire Weather in the United States
Year: 2015
Climate change is expected to alter the frequency and severity of atmospheric conditions conducive for wildfires. In this study, we assess potential changes in fire weather conditions for the contiguous United States using the Haines Index (HI), a fire weather index that has been employed operationally to detect atmospheric conditions favorable for large and erratic fire behavior. The index summarizes lower atmosphere stability and dryness into an integer value with higher values indicting more fire-prone conditions. We use simulations produced by the North American Regional Climate Change…
Publication Type: Journal Article
A state-and-transition simulation modeling approach for estimating the historical range of variability
Year: 2015
Reference ecological conditions offer important context for land managers as they assess the condition of their landscapes and provide benchmarks for desired future conditions. State-and-transition simulation models (STSMs) are commonly used to estimate reference conditions that can be used to evaluate current ecosystem conditions and to guide land management decisions and activities. The LANDFIRE program created more than 1,000 STSMs and used them to assess departure from a mean reference value for ecosystems in the United States. While the mean provides a useful benchmark, land managers and…
Publication Type: Journal Article