Research Database
Displaying 61 - 80 of 121
Stop going around in circles: towards a reconceptualisation of disaster risk management phases
Year: 2021
Purpose The way that disasters are managed, or indeed mis-managed, is often represented diagrammatically as a “disaster cycle”. The cyclical aspects of the disaster (risk) management concept, comprised of numerous operational phases, have, in recent years, been criticised for conceptualising and representing disasters in an overly simplistic way that typically starts with a disaster “event” – and subsequently leads onto yet another disaster. Such cyclical thinking has been proven to not be very useful for the complexities associated with understanding disasters and their risks. This paper…
Publication Type: Journal Article
Contrasting the role of human- and lightning-caused wildfires on future fire regimes on a Central Oregon landscape
Year: 2021
Climate change is expected to increase fire activity in many regions of the globe, but the relative role of human vs. lightning-caused ignitions on future fire regimes is unclear. We developed statistical models that account for the spatiotemporal ignition patterns by cause in the eastern slopes of the Cascades in Oregon, USA. Projected changes in energy release component from a suite of climate models were used with our model to quantify changes in frequency and extent of human and lightning-caused fires and record-breaking events based on sizes of individual fires between contemporary (2006…
Publication Type: Journal Article
Evaluating rural Pacific Northwest towns for wildfire evacuation vulnerability
Year: 2021
Wildfire is an annual threat for many rural communities in the Pacific Northwest region of the United States. In some severe events, evacuation is one potential course of action to gain safety from an advancing wildfire. Since most evacuations occur in a personal vehicle along the surrounding road network, the quality of this network is a critical component of a community's vulnerability to wildfire. In this paper, we leverage a high-resolution spatial dataset of wildfire burn probability and mean fireline intensity to conduct a regional-scale screening of wildfire evacuation vulnerability…
Publication Type: Journal Article
Episodic occurrence of favourable weather constrains recovery of a cold desert shrubland after fire
Year: 2021
1. Key to the long-term resilience of dryland ecosystems is the recovery of foundation plant species following disturbance. In ecosystems with high interannual weather variability, understanding the influence of short-term environmental conditions on establishment of foundation species is essential for identifying vulnerable landscapes and developing restoration strategies. We asked how annual environmental conditions affect post-fire establishment of Artemisia tridentata, a shrub species that dominates landscapes across much of the western United States, and evaluated the influence of…
Publication Type: Journal Article
Existing Improvements in Simulation of Fire–Wind Interaction and Its Effects on Structures
Year: 2021
This work provides a detailed overview of existing investigations into the fire–wind interaction phenomena. Specifically, it considers: the fanning effect of wind, wind direction and slope angle, and the impact of wind on fire modelling, and the relevant analysis (numerical and experimental) techniques are evaluated. Recently, the impact of fire on buildings has been widely analysed. Most studies paid attention to fire damage evaluation of structures as well as structure fire safety engineering, while the disturbance interactions that influence structures have been neglected in prior studies…
Publication Type: Journal Article
Tribes & Climate Change
Year: 2020
Native Americans rely on tribally important ecosystem services such as traditional foods, hunting, timber production, non-timber forest resources (recreation, water), and cultural resources. Unfortunately, many of these resources may be highly vulnerable to the impacts of climate change. A research team sought to answer the question: Where and which tribally-important ecosystem services will be affected by climate change in the Pacific Northwest? They used projections from climate and vegetation models and stakeholder input to demonstrate a generalizable approach for assessing possible…
Publication Type: Web project page
The hot-dry-windy index: A new tool for forecasting fire weather
Year: 2020
Accurate predictions of how weather may affect a wildfire’s behavior are needed to protect crews on the line and efficiently allocate firefighting resources. Since 1988, fire meteorologists have used a tool called the Haines Index to predict days when the weather will exacerbate a wildfire. Although the Haines Index is widely believed to have value, it never received rigorous testing on the line. Even Don Haines, the U.S. Forest Service meteorologist who developed the index, has said the Haines Index needs further refinement. Recognizing that a new fire weather prediction tool was needed, a…
Publication Type: Report
Weather, Risk, and Resource Orders on Large Wildland Fires in the Western US
Year: 2020
Our results suggest that weather is a primary driver of resource orders over the course of extended attack efforts on large fires. Incident Management Teams (IMTs) synthesize information about weather, fuels, and order resources based on expected fire growth rather than simply reacting to observed fire growth. Background and Objectives: Weather conditions are a well-known determinant of fire behavior and are likely to become more erratic under climate change. Yet, there is little empirical evidence demonstrating how IMTs respond to observed or expected weather conditions. An understanding of…
Publication Type: Journal Article
Social Vulnerability and Wildfire in the Wildland-Urban Interface
Year: 2019
People living in the Pacific Northwest confrontrisks associated with environmentalhazards such as wildfire. Vulnerability towildfire hazard is commonly recognized as beingspatially distributed according to geographic conditionsthat collectively determine the probabilityof exposure. For example, exposure to wildfirehazard is higher for people living in rural, forestedsettings than in a strictly urban neighborhood becauserural housing is built in close proximity tothe threat source, e.g., flammable landscapes suchas forests and chaparral. Yet, even if levels of exposureare held constant, not…
Publication Type: Report
Social Vulnerability and Wildfire in the Wildland-Urban Interface - Annotated Bibliography
Year: 2019
Publication Type: Report
Severe Fire Danger Index: A Forecastable Metric to Inform Firefighter and Community Wildfire Risk Management
Year: 2019
Despite major advances in numerical weather prediction, few resources exist to forecast wildland fire danger conditions to support operational fire management decisions and community early-warning systems. Here we present the development and evaluation of a spatial fire danger index that can be used to assess historical events, forecast extreme fire danger, and communicate those conditions to both firefighters and the public. It uses two United States National Fire Danger Rating System indices that are related to fire intensity and spread potential. These indices are normalized, combined, and…
Publication Type: Journal Article
Social Vulnerability and Wildfire in the Wildland-Urban Interface: Literature synthesis
Year: 2019
The overall objective of this paper is to clarify areas of debate, clearly define and contrast disparate approaches, and synthesize findings that may help address vulnerability to wildfires and other natural hazards. While land managers and fire personnel might find it pertinent to approach biophysical and social issues separately, addressing both aspects of wildfire hazard can be productive for minimizing risk and empowering communities, neighborhoods, and households to prepare and recover from wildfire events. We aim to provide a practical grasp of social vulnerability research as it…
Publication Type: Report
Wildfire and topography impacts on snow accumulation and retention in montane forests
Year: 2018
Wildfires are increasing in frequency, severity, and size in many parts of the world. Forest fires can fundamentally affect snowpack and watershed hydrology by restructuring forest composition and structure. Topography is an important factor in snowpack accumulation and ablation as it influences exposure to solar radiation and atmospheric conditions. Few direct measurements of post-fire snowpack have been taken and none to this date that evaluate how topographical aspect influences the effect of forest fire on snowpack accumulation and ablation. We set up a two-year experiment on the…
Publication Type: Journal Article
Social Vulnerability to Climate Change in Temperate Forest Areas: New Measures of Exposure, Sensitivity, and Adaptive Capacity
Year: 2018
Human communities in forested areas that are expected to experience climate-related changes have received little attention in the scholarly literature on vulnerability assessment. Many communities rely on forest ecosystems to support their social and economic livelihoods. Climate change could alter these ecosystems. We developed a framework that measures social vulnerability to slow-onset climate-related changes in forest ecosystems. We focused on temperate forests because this biome is expected to experience dramatic change in the coming years, with adverse effects for humans. We advance…
Publication Type: Journal Article
Regional and local controls on historical fire regimes of dry forests and woodlands in the Rogue River Basin, Oregon, USA
Year: 2018
Fire regimes structure plant communities worldwide with regional and local factors, including anthropogenic fire management, influencing fire frequency and severity. Forests of the Rogue River Basin in Oregon, USA, are both productive and fire-prone due to ample winter precipitation and summer drought; yet management in this region is strongly influenced by forest practices that depend on fire exclusion. Regionally, climate change is increasing fire frequency, elevating the importance of understanding historically frequent-fire regimes. We use cross-dated fire-scars to characterize historical…
Publication Type: Journal Article
Decreasing fire season precipitation increased recent western US forest wildfire activity
Year: 2018
Western United States wildfire increases have been generally attributed to warming temperatures, either through effects on winter snowpack or summer evaporation. However, near-surface air temperature and evaporative demand are strongly influenced by moisture availability and these interactions and their role in regulating fire activity have never been fully explored. Here we show that previously unnoted declines in summer precipitation from 1979 to 2016 across 31–45% of the forested areas in the western United States are strongly associated with burned area variations. The number of wetting…
Publication Type: Journal Article
High-severity fire: Evaluating its key drivers and mapping its probability across western US forests
Year: 2018
Wildland fire is a critical process in forests of the western United States (US). Variation in fire behavior, which is heavily influenced by fuel loading, terrain, weather, and vegetation type, leads to heterogeneity in fire severity across landscapes. The relative influence of these factors in driving fire severity, however, is poorly understood. Here, we explore the drivers of high-severity fire for forested ecoregions in the western US over the period 2002–2015. Fire severity was quantified using a satellite-inferred index of severity, the relativized burn ratio. For each ecoregion, we…
Publication Type: Journal Article
Human-related ignitions concurrent with high winds promote large wildfires across the USA
Year: 2018
Large wildfires (>40 ha) account for the majority of burned area across the contiguous United States (US) and appropriate substantial suppression resources. A variety of environmental and social factors influence wildfire growth and whether a fire overcomes initial attack efforts and becomes a large wildfire. However, little is known about how these factors differ between lightning-caused and human-caused wildfires. This study examines differences in temperature, vapour pressure deficit, fuel moisture and wind speed for large and small lightning- and human-caused wildfires during the…
Publication Type: Journal Article
Influences of fire–vegetation feedbacks and post‐fire recovery rates on forest landscape vulnerability to altered fire regimes
Year: 2018
In the context of ongoing climatic warming, forest landscapes face increasing risk of conversion to non‐forest vegetation through alteration of their fire regimes and their post‐fire recovery dynamics. However, this pressure could be amplified or dampened, depending on how fire‐driven changes to vegetation feed back to alter the extent or behaviour of subsequent fires. Here we develop a mathematical model to formalize understanding of how fire–vegetation feedbacks and the time to forest recovery following high‐severity (i.e. stand‐replacing) fire affect the extent and stability of forest…
Publication Type: Journal Article
The Weather Conditions for Desired Smoke Plumes at a FASMEE Burn Site
Year: 2018
Weather is an important factor that determines smoke development, which is essential information for planning smoke field measurements. This study identifies the synoptic systems that would favor to produce the desired smoke plumes for the Fire and Smoke Model Evaluation Experiment (FASMEE). Daysmoke and PB-Piedmont (PB-P) models are used to simulate smoke plume evolution during the day time and smoke drainage and fog formation during the nighttime for hypothetical prescribed burns on 5–8 February 2011 at the Stewart Army Base in the southeastern United States. Daysmoke simulation is…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 2
- 3
- 4
- 5
- 6
- …
- Next page
- Last page