Research Database
Displaying 81 - 100 of 109
Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event
Year: 2014
Under a rapidly warming climate, a critical management issue in semiarid forests of western North America is how to increase forest resilience to wildfire. We evaluated relationships between fuel reduction treatments and burn severity in the 2006 Tripod Complex fires, which burned over 70 000 ha of mixed-conifer forests in the North Cascades range of Washington State and involved 387 past harvest and fuel treatment units. A secondary objective was to investigate other drivers of burn severity including landform, weather, vegetation characteristics, and a recent mountain pine beetle outbreak.…
Publication Type: Journal Article
Is fire exclusion in mountain big sagebrush communities prudent? Soil nutrient, plant diversity and arthropod response to burning
Year: 2014
Fire has largely been excluded from many mountain big sagebrush communities. Managers are reluctant to reintroduce fire, especially in communities without significant conifer encroachment, because of the decline in sagebrush-associated wildlife. Given this management direction, a better understanding of fire exclusion and burning effects is needed. We compared burned to unburned plots at six sites in Oregon. Soil nutrient availability generally increased with burning. Plant diversity increased with burning in the first post-burn year, but decreased by the third post-burn year. Burning altered…
Publication Type: Journal Article
The influence of experimental wind disturbance on forest fuels and fire characteristics
Year: 2014
Current theory in disturbance ecology predicts that extreme disturbances in rapid succession can lead to dramatic changes in species composition or ecosystem processes due to interactions among disturbances. However, the extent to which less catastrophic, yet chronic, disturbances such as wind damage and fire interact is not well studied. In this study, we simulated wind-caused gaps in a Pinus taeda forest in the Piedmont of north-central Georgia using static winching of trees to examine how wind damage may alter fuel characteristics and the behavior of subsequent prescribed fire. We found…
Publication Type: Journal Article
The Ecology and Management of Moist Mixed-Conifer Forests in Eastern Oregon and Washington: a Synthesis of the Relevant Biophysical Science and Implications for Future Land Management
Year: 2014
Land managers in the Pacific Northwest have reported a need for updated scientific information on the ecology and management of mixed-conifer forests east of the Cascade Range in Oregon and Washington. Of particular concern are the moist mixed-conifer forests, which have become drought-stressed and vulnerable to high-severity fire after decades of human disturbances and climate warming. This synthesis responds to this need. We present a compilation of existing research across multiple natural resource issues, including disturbance regimes, the legacy effects of past management actions,…
Publication Type: Report
Catchment-scale stream temperature response to land disturbance by wildfire governed by surface–subsurface energy exchange and atmospheric controls
Year: 2014
In 2003, the Lost Creek wildfire severely burned 21,000 hectares of forest on the eastern slopes of the Canadian Rocky Mountains. Seven headwater catchments with varying levels of disturbance (burned, post-fire salvage logged, and unburned) were instrumented as part of the Southern Rockies Watershed Project to measure streamflow, stream temperature, and meteorological conditions. From 2004 to 2010 mean annual stream temperature (Ts) was elevated 0.8–2.1 [1]C in the burned and post-fire salvage logged streams compared to the unburned streams. Mean daily maximum Ts was 1.0–3.0 [1]C warmer and…
Publication Type: Journal Article
Western Spruce Budworm Outbreaks Did Not Increase Fire Risk Over the Last Three Centuries: A Dendrochronological Analysis of Inter-Disturbance Synergism
Year: 2014
Insect outbreaks are often assumed to increase the severity or probability of fire occurrence through increased fuel availability, while fires may in turn alter susceptibility of forests to subsequent insect outbreaks through changes in the spatial distribution of suitable host trees. However, little is actually known about the potential synergisms between these natural disturbances. Assessing inter-disturbance synergism is challenging due to the short length of historical records and the confounding influences of land use and climate changes on natural disturbance dynamics. We used…
Publication Type: Journal Article
Interactions among the mountain pine beetle, fires, and fuels
Year: 2014
Bark beetle outbreaks and wildfires are principal drivers of change in western North American forests, and both have increased in severity and extent in recent years. These two agents of disturbance interact in complex ways to shape forest structure and composition. For example, mountain pine beetle, Dendroctonus ponderosae Hopkins, epidemics alter forest fuels with consequences for the frequency and intensity of wildfires and, conversely, fire injury to trees can promote bark beetle attack and increase beetle populations. Given the great influence these processes have on forest ecosystems, a…
Publication Type: Journal Article
Wildfire and the Future of Water Supply
Year: 2014
In many parts of the world, forests provide high quality water for domestic, agricultural, industrial, and ecological needs, with water supplies in those regions inextricably linked to forest health. Wildfires have the potential to have devastating effects on aquatic ecosystems and community drinking water supply through impacts on water quantity and quality. In recent decades, a combination of fuel load accumulation, climate change, extensive droughts, and increased human presence in forests have resulted in increases in area burned and wildfire severity—a trend predicted to continue. Thus,…
Publication Type: Journal Article
Mapping multiple forest threats in the northwestern United States
Year: 2013
US forestlands are increasingly subject to disturbances including wildfire, insects and disease, and urban and exurban development. Devising strategies for addressing these “forest threats“ depends on anticipating where individual disturbances are most likely and where they might occur in combination. However, many spatial data sets describing forest threats are produced at fine scales but are intended only for coarse-scale planning and policy purposes. We demonstrate one way to combine and display forest threat data at their appropriate spatial scales, using spatial data characterizing…
Publication Type: Journal Article
Conditions favouring Bromus tectorum dominance of endangered sagebrush steppe ecosystems
Year: 2013
Ecosystem invasibility is determined by combinations of environmental variables, invader attributes, disturbance regimes, competitive abilities of resident species and evolutionary history between residents and disturbance regimes. Understanding the relative importance of each factor is critical to limiting future invasions and restoring ecosystems. We investigated factors potentially controlling Bromus tectorum invasions into Artemisia tridentata ssp. wyomingensis communities across 75 sites in the Great Basin. We measured soil texture, cattle grazing intensity, gaps among perennial plants…
Publication Type: Journal Article
Foliar moisture content variations in lodgepole pine over the diurnal cycle during the red stage of mountain pine beetle attack
Year: 2013
Widespread outbreaks of the mountain pine beetle (Dendroctonus ponderosae Hopkins) in the lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests of North America have produced stands with significant levels of recent tree mortality. The needle foliage from recently attacked trees typically turns red within one to two years of attack indicating successful colonization by the beetle and tree death. Attempts to model crown fire potential in these stands have assumed that the moisture content of dead foliage responds similarly to changes in air temperature and relative…
Publication Type: Journal Article
The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984-2008: the role of temporal scale
Year: 2013
The relationship between large fire occurrence and drought has important implications for fire prediction under current and future climates. This study’s primary objective was to evaluate correlations between drought and fire-danger-rating indices representing short- and long-term drought, to determine which had the strongest relationships with large fire occurrence at the scale of the western United States during the years 1984–2008. We combined 4–8-km gridded drought and fire-danger-rating indices with information on fires greater than 404.7 ha (1000 acres). To account for differences in…
Publication Type: Journal Article
Development of Risk Matrices for Evaluating Climatic Change Responses of Forested Habitats
Year: 2012
We present an approach to assess and compare risk from climate change among multiple species through a risk matrix, in which managers can quickly prioritize for species that need to have strategies developed, evaluated further, or watched. We base the matrix upon earlier work towards the National Climate Assessment for potential damage to infrastructures from climate change. Risk is defined here as the product of the likelihood of an event occurring and the consequences or impact of that event. In the context of species habitats, the likelihood component is related to the potential changes in…
Publication Type: Journal Article
Moisture desorption in mechanically masticated fuels: effects of particle fracturing and fuelbed compaction
Year: 2012
Mechanical mastication is increasingly used as a wildland fuel treatment, reducing standing trees and shrubs to compacted fuelbeds of fractured woody fuels. One major shortcoming in our understanding of these fuelbeds is how particle fracturing influences moisture gain or loss, a primary determinant of fire behaviour. To better understand fuel moisture dynamics, we measured particle and fuelbed drying rates of masticated Arctostaphylos manzanita and Ceanothus velutinus shrubs, common targets of mastication in fire-prone western USA ecosystems. Drying rates of intact and fractured particles…
Publication Type: Journal Article
Strategic planning for instream flow restoration: a case study of potential climate change impacts in the central Columbia River basin
Year: 2012
We provide a case study prioritizing instream flow restoration activities by sub-basin according to the habitat needs of Endangered Species Act (ESA)-listed salmonids relative to climate change in the central Columbia River basin in Washington State (USA). The objective is to employ scenario analysis to inform and improve existing instream flow restoration projects. We assess the sensitivity of late summer (July, August, and September) flows to the following scenario simulations singly or in combination: climate change, changes in the quantity of water used for irrigation and possible changes…
Publication Type: Journal Article
Predicting Dry Lightning Risk Nationwide
Year: 2012
Meteorologists developed two formulas to predict the probability of dry lightning throughout the continental United States and Alaska and parts of Canada. Predictions are made daily and are accessible through the web at http://www.airfire.org/tools/daily-fi re-weather/dry-lightning-probability. The emphasis is on the western United States, where dry lightning is a more common occurrence. Predictions are based on identifying days on which lightning is expected and separately determining whether there is likely to be at least 1/10th inch of accompanying rain. The formulas are run with the…
Publication Type: Report
Seasonal variation in surface fuel moisture between unthinned and thinned mixed conifer forest, northern California, USA
Year: 2012
Reducing stand density is often used as a tool for mitigating the risk of high-intensity crown fires. However, concern has been expressed that opening stands might lead to greater drying of surface fuels, contributing to increased fire risk. The objective of this study was to determine whether woody fuel moisture differed between unthinned and thinned mixed-conifer stands. Sections of logs representing the 1000- and 10 000-h fuel sizes were placed at 72 stations within treatment units in the fall (autumn) of 2007. Following snow-melt in 2008, 10-h fuel sticks were added and all fuels were…
Publication Type: Journal Article
The Use of Seedbed Modifications and Wood Chips to Accelerate Restoration of Well Pad Sites in Western Colorado, USA
Year: 2012
Semiarid ecosystems of Western North America are experiencing a boom in natural gas development. However, these systems are slow to recover from the disturbances created. The purpose of this study was to develop improved restoration techniques on natural gas well pads in Western Colorado. This study examined effects and interactions of seedbed modifications, soil amendments, seed mixtures, and seeding methods. The experiment was conducted in pinyon-juniper and semidesert shrub plant communities on five natural gas well pads beginning in 2006. Soil and plant cover data were collected to assess…
Publication Type: Journal Article
Climate-Induced Changes in Lake Ecosystem Structure Inferred from Coupled Neo- and Paleoecological Approaches
Year: 2012
Over the 20th century, surface water temperatures have increased in many lake ecosystems around the world, but long-term trends in the vertical thermal structure of lakes remain unclear, despite the strong control that thermal stratification exerts on the biological response of lakes to climate change. Here we used both neo- and paleoecological approaches to develop a fossil-based inference model for lake mixing depths and thereby refine understanding of lake thermal structure change. We focused on three common planktonic diatom taxa, the distributions of which previous research suggests…
Publication Type: Journal Article
Integrating Theoretical Climate and Fire Effects on Savanna and Forest Systems
Year: 2012
The role of fire and climate in determining savanna and forest distributions requires comprehensive theoretical reevaluation. Empirical studies show that climate constrains maximum tree cover and that fire feedbacks can reduce tree cover substantially, but neither the stability nor the dynamics of these systems are well understood. A theoretical integration of rainfall effects with fire processes in particular is lacking. We use simple, well-supported assumptions about the percolation dynamics of fire spread and the demographic effects of climate and fire on trees to build a dynamic model…
Publication Type: Journal Article