Research Database
Displaying 181 - 200 of 200
Predicting Dry Lightning Risk Nationwide
Year: 2012
Meteorologists developed two formulas to predict the probability of dry lightning throughout the continental United States and Alaska and parts of Canada. Predictions are made daily and are accessible through the web at http://www.airfire.org/tools/daily-fi re-weather/dry-lightning-probability. The emphasis is on the western United States, where dry lightning is a more common occurrence. Predictions are based on identifying days on which lightning is expected and separately determining whether there is likely to be at least 1/10th inch of accompanying rain. The formulas are run with the…
Publication Type: Report
Seasonal variation in surface fuel moisture between unthinned and thinned mixed conifer forest, northern California, USA
Year: 2012
Reducing stand density is often used as a tool for mitigating the risk of high-intensity crown fires. However, concern has been expressed that opening stands might lead to greater drying of surface fuels, contributing to increased fire risk. The objective of this study was to determine whether woody fuel moisture differed between unthinned and thinned mixed-conifer stands. Sections of logs representing the 1000- and 10 000-h fuel sizes were placed at 72 stations within treatment units in the fall (autumn) of 2007. Following snow-melt in 2008, 10-h fuel sticks were added and all fuels were…
Publication Type: Journal Article
Surface fuel treatments in young, regenerating stands affect wildfire severity in a mixed conifer forest, eastside Cascade Range, Washington, USA
Year: 2012
Previous studies have debated the flammability of young regenerating stands, especially those in a matrix of mature forest, and no consensus has emerged as to whether young stands are inherently prone to high severity wildfire. This topic has recently been addressed using spatial imagery, and weak inferences were made given the scale mismatch between the coarse resolution of spatial imagery and the fine resolution of mechanisms driving fire severity. We collected empirical stand and fire-severity data from 44 regenerating stands that are interspersed in mature, mid-elevation forests in the…
Publication Type: Journal Article
Strategic planning for instream flow restoration: a case study of potential climate change impacts in the central Columbia River basin
Year: 2012
We provide a case study prioritizing instream flow restoration activities by sub-basin according to the habitat needs of Endangered Species Act (ESA)-listed salmonids relative to climate change in the central Columbia River basin in Washington State (USA). The objective is to employ scenario analysis to inform and improve existing instream flow restoration projects. We assess the sensitivity of late summer (July, August, and September) flows to the following scenario simulations singly or in combination: climate change, changes in the quantity of water used for irrigation and possible changes…
Publication Type: Journal Article
Fuel Variability Following Wildfire in Forests with Mixed Severity Fire Regimes, Cascade Range, USA
Year: 2012
Fire severity influences post-burn structure and composition of a forest and the potential for a future fire to burn through the area. The effects of fire on forests with mixed severity fire regimes are difficult to predict and interpret because the quantity, structure, and composition of forest fuels vary considerably. This study examines the relationship between fire severity and post-burn fuel characteristics in forests with mixed severity fire regimes. We sampled live and dead canopy and…
Publication Type: Journal Article
Climate-Induced Changes in Lake Ecosystem Structure Inferred from Coupled Neo- and Paleoecological Approaches
Year: 2012
Over the 20th century, surface water temperatures have increased in many lake ecosystems around the world, but long-term trends in the vertical thermal structure of lakes remain unclear, despite the strong control that thermal stratification exerts on the biological response of lakes to climate change. Here we used both neo- and paleoecological approaches to develop a fossil-based inference model for lake mixing depths and thereby refine understanding of lake thermal structure change. We focused on three common planktonic diatom taxa, the distributions of which previous research suggests…
Publication Type: Journal Article
Integrating Theoretical Climate and Fire Effects on Savanna and Forest Systems
Year: 2012
The role of fire and climate in determining savanna and forest distributions requires comprehensive theoretical reevaluation. Empirical studies show that climate constrains maximum tree cover and that fire feedbacks can reduce tree cover substantially, but neither the stability nor the dynamics of these systems are well understood. A theoretical integration of rainfall effects with fire processes in particular is lacking. We use simple, well-supported assumptions about the percolation dynamics of fire spread and the demographic effects of climate and fire on trees to build a dynamic model…
Publication Type: Journal Article
Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests
Year: 2012
We examined the effects of three early season (spring) prescribed fires on burn severity patterns of summer wildfires that occurred 1–3 years post- treatment in a mixed conifer forest in central Idaho. Wildfire and prescribed fire burn severities were estimated as the difference in normalized burn ratio (dNBR) using Landsat imagery. We used GIS derived vegetation, topography, and treatment variables to generate models predicting the wildfire burn severity of 1286–5500 30- m pixels within and around treated areas. We found that wildfire severity was significantly lower in treated areas than in…
Publication Type: Journal Article
Meta-analysis of avian and small-mammal response to fire severity and fire surrogate treatments in US fire-prone forests
Year: 2012
Management in fire-prone ecosystems relies widely upon application of prescribed fire and/or fire surrogate (e.g., forest thinning) treatments to maintain biodiversity and ecosystem function. Recently, published literature examining wildlife response to fire and fire management has increased rapidly. However, none of this literature has been synthesized quantitatively, precluding assessment of consistent patterns of wildlife response among treatment types. Using meta-analysis, we examined the scientific literature on vertebrate demographic responses to burn severity (low/moderate, high), fire…
Publication Type: Journal Article
Assessing Fuel Treatment Effectiveness After the Tripod Complex Fires
Year: 2011
Over the past 50 years, wildfire frequency and area burned have increased in the dry forests of western North America. To help reduce high surface fuel loads and potential wildfire severity, a variety of fuel treatments are applied. In spite of the common use of these management practices, there have been relatively few opportunities to quantitatively measure their efficacy in wildfires. That changed with the 2006 Tripod Complex fires in the Okanogan-Wenatchee National Forest in Washington—one of the largest fire events in Washington state over the past five decades. A serendipitous…
Publication Type: Report
Short- and Long-term Effects of Fire on Carbon in US Dry Temperate Forest Systems
Year: 2011
Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires,…
Publication Type: Journal Article
Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006
Year: 2011
Fire is a keystone process in many ecosystems of western North America. Severe fires kill and consume large amounts of above- and belowground biomass and affect soils, resulting in long-lasting consequences for vegetation, aquatic ecosystem productivity and diversity, and other ecosystem properties. We analyzed the occurrence of, and trends in, satellite-derived burn severity across six ecoregions in the Southwest and Northwest regions of the United States from 1984 to 2006 using data from the Monitoring Trends in Burn Severity project. Using 1,024 fires from the Northwest (4,311,871 ha) and…
Publication Type: Journal Article
Evaluating Soil Risks Associated With Severe Wildfire and Ground-Based Logging
Year: 2011
Rehabilitation and timber-salvage activities after wildfire require rapid planning and rational decisions. Identifying areas with high risk for erosion and soil productivity losses is important. Moreover, allocation of corrective and mitigative efforts must be rational and prioritized. Our logic-based analysis of forested soil polygons on the Okanogan-Wenatchee National Forest was designed and implemented with the Ecosystem Management Decision Support (EMDS) system to evaluate risks to soil properties and productivity associated with moderate to severe wildfire and unmitigated use of ground-…
Publication Type: Report
The fire pulse: wildfire stimulates flux of aquatic prey to terrestrial habitats driving increase in riparian consumers
Year: 2010
We investigated the midterm effects of wildfire (in this case, five years after the fire) of varying severity on periphyton, benthic invertebrates, emerging adult aquatic insects, spiders, and bats by comparing unburned sites with those exposed to low severity (riparian vegetation burned but canopy intact) and high severity (canopy completely removed) wildfire. We observed no difference in periphyton chlorophyll a or ash-free dry mass among different burn categories but did observe significantly greater biomass of benthic invertebrates in both high severity burned and unburned reaches versus…
Publication Type: Journal Article
Assessing fuel treatment effectiveness using satellite imagery and spatial statistics
Year: 2009
Understanding the influences of forest management practices on wildfire severity is critical in fire-prone ecosystems of the western United States. Newly available geospatial data sets characterizing vegetation, fuels, topography, and burn severity offer new opportunities for studying fuel treatment effectiveness at regional to national scales. In this study, we used ordinary least-squares (OLS) regression and sequential autoregression (SAR) to analyze fuel treatment effects on burn severity for three recent wildfires: the Camp 32 fire in western Montana, the School fire in southeastern…
Publication Type: Journal Article
In a Ponderosa Pine Forest, Prescribed Fires Reduce the Likelihood of Scorched Earth
Year: 2008
The Malheur National Forest is located in the Blue Mountains on Oregon’s eastern side, the portion of the state that lies east of the Cascade Crest. In the mid 1990s, researchers and land managers conceived a suite of experiments to explore the effects of prescribed fire on forest health. The studies were designed to coincide with prescribed burns conducted by the USDA Forest Service. The experiments took place in the Emigrant Creek Ranger District, a remote area dominated by ponderosa pine. One of the research projects aimed to assess soil health after different intervals of fire frequency…
Publication Type: Report
Lessons of the Hayman fire: weeds, woodpeckers and fire severity
Year: 2008
This project took advantage of pre-fire data gathered within the perimeter of Colorado’s 2002 Hayman Fire. Researchers studied the unique fire regime of Front Range ponderosa pine forests, and fire effects on understory-plant communities and American Three-toed Woodpeckers. Results confirmed that historically, the diverse structure of these forests was maintained by a mixed-severity fire regime that included large areas of severe fire. In addition, researchers found that much of the burn meets habitat requirements for American Three-toed Woodpeckers, and that understory plant species that…
Publication Type: Report
The Ecological Importance of Severe Wildfires: Some Like it Hot
Year: 2008
Many scientists and forest land managers concur that past fire suppression, grazing, and timber harvesting practices have created unnatural and unhealthy conditions in the dry, ponderosa pine forests of the western United States. Specifically, such forests are said to carry higher fuel loads and experience fires that are more severe than those that occurred historically. It remains unclear, however, how far these generalizations can be extrapolated in time and space, and how well they apply to the more mesic ponderosa pine systems and to other forest systems within the western United States.…
Publication Type: Journal Article
Four centuries of soil carbon and nitrogen change after stand-replacing fire in a forest landscape in the western Cascade range of Oregon
Year: 2008
Episodic stand-replacing wildfire is a significant disturbance in mesic and moist Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests of the Pacific Northwest. We studied 24 forest stands with known fire histories in the western Cascade Range in Oregon to evaluate long-term impacts of stand-replacing wildfire on carbon (C) and nitrogen (N) pools and dynamics within the forest floor (FF, Oe and Oa horizons) and the mineral soil (0–10 cm). Twelve of our stands burned approximately 150 years ago (“young”), and the other 12 burned approximately 550 years ago (“old”). Forest floor mean C…
Publication Type: Journal Article
Postfire woodpecker foraging in salvage-logged and unlogged forests of the Sierra Nevada
Year: 2008
In forests, high-severity burn patches — wherein most or all of the trees are killed by fire — often occur within a mosaic of low- and moderate-severity effects. Although there have been several studies of postfire salvage-logging effects on bird species, there have been few studies of effects on bird species associated with high-severity patches in forests that have otherwise burned at lower severities. From 2004 to 2006, we investigated the foraging presence or absence of three woodpecker species, the Black-backed (Picoides arcticus), Hairy (P. villosus), and White-headed (P. albolarvatus)…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 6
- 7
- 8
- 9
- 10