Research Database
Displaying 81 - 100 of 119
Mapping the daily progression of large wildland fires using MODIS active fire data
Year: 2014
High temporal resolution information on burnt area is needed to improve fire behaviour and emissions models. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly and active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the timing of burnt area for 16 large wildland fires. For each fire, parameters for the kriging model were defined using variogram analysis. The optimal number of observations used to estimate a pixel’s time of burning varied between four and six among the fires studied. The median standard error from…
Publication Type: Journal Article
The relationship of post-fire white ash cover to surface fuel consumption
Year: 2013
White ash results from the complete combustion of surface fuels, making it a logically simple retrospective indicator of surface fuel consumption. However, the strength of this relationship has been neither tested nor adequately demonstrated with field measurements. We measured surface fuel loads and cover fractions of white ash and four other surface materials (green vegetation, brown non-photosynthetic vegetation, black char and mineral soil) immediately before and after eight prescribed fires in four disparate fuelbed types: boreal forest floor, mixed conifer woody slash, mixed conifer…
Publication Type: Journal Article
Do carbon offsets work? The role of forest management in greenhouse gas mitigation
Year: 2013
As forest carbon offset projects become more popular, professional foresters are providing their expertise to support them. But when several members of the Society of American Foresters questioned the science and assumptions used to design the projects, the organization decided to convene a task force to examine whether these projects can provide the intended climate benefits. The report details reasons to look for other solutions to greenhouse gas emission challenges. After synthesizing the latest available science, the authors challenge the underlying assumptions used to establish most…
Publication Type: Report
The merits of prescribed fire outweigh potential carbon emission effects
Year: 2013
A White Paper developed by Association for Fire Ecology, International Association of Wildland Fire, Tall Timbers Research Station, and The Nature Conservancy.While North American ecosystems vary widely in their ecology and natural historical fire regimes, they are unified in benefitting from prescribed fire when judiciously applied with the goal of maintaining and restoring native ecosystem composition, structure, and function. On a modern landscape in which historical fire regimes cannot naturally occur due to fuel load build-up and resulting public safety concerns, the cornerstone…
Publication Type: Report
Making monitoring count: project design for active adaptive management
Year: 2013
Ongoing environmental change requires that managers develop strategies capable of achieving multiple objectives in an uncertain future. Active adaptive management (AAM) offers a robust approach to reducing uncertainty while also considering diverse stakeholder perspectives. Important features of AAM include recognition of learning as a management objective, integration of monitoring throughout all aspects of project design and implementation, and use of experimental design in project planning. These features facilitate collaborator engagement and adaptive management based on credible…
Publication Type: Journal Article
Changes in Soil Chemical and Biological Properties After Thinning and Prescribed Fire for Ecosystem Restoration in a Rocky Mountain Douglas Fir Forest
Year: 2012
Practices such as thinning followed by prescribed burning, often termed ‘ecosystem restoration practices’, are being used in Rocky Mountain forests to prevent uncontrolled wildfire and restore forests to pre-settlement conditions. Prior to burning, surface fuels may be left or collected into piles, which may affect fire temperatures and attendant effects on the underlying soil. The objective of this study is to determine which pre-fire fuel management treatments best reduce fuel loadings without causing fire temperatures high enough to impair soil chemical and biological properties. Five fuel…
Publication Type: Journal Article
Does Wood Bioenergy Increase Carbon Stocks in Forests?
Year: 2012
Wood bioenergy is touted as carbon neutral because biological regrowth recaptures the carbon released in energy production. However, some argue that using wood as an energy feedstock will result in decreased forest stocks and thereby a net reduction of carbon sequestered by forests. Such arguments fail to recognize that increased demand for wood bioenergy could increase stocks of wood, a renewable resource. We address the carbon neutrality question using a dynamic optimization forest management model to examine the effect of increasing or decreasing wood bioenergy demand on an existing forest…
Publication Type: Journal Article
Soil-mediated effects of subambient to increased carbon dioxide on grassland productivity
Year: 2012
Grasslands are structured by climate and soils, and are increasingly affected by anthropogenic changes, including rising atmospheric CO 2 concentrations. CO 2 enrichment can alter grassland ecosystem function both directly and through indirect, soil-specific effects on moisture, nitrogen availability and plant species composition, potentially leading to threshold change in ecosystem properties. Here we show that the increase in aboveground net primary productivity (ANPP) with CO 2 enrichment depends strongly on soil type. We found that the ANPP-CO 2 response of grassland was 2.5× greater on…
Publication Type: Journal Article
The Long-Term Effects of Wildfire and Post-Fire Vegetation on Sierra Nevada Forest Soils
Year: 2012
This paper compares carbon (C) and nutrient contents in soils (Alfisols derived from andesite), forest floor and vegetation in a former fire (1960) and an adjacent forest in the Sagehen Watershed in the Sierra Nevada Mountains of California. Soils from the former fire (now occupied predominantly by Ceanothus velutinus, a nitrogen-fixing shrub) had significantly lower contents of extractable SO42− and P (both Bray and bicarbonate) but significantly greater contents of exchangeable Ca2+ than the adjacent forested site (dominated by Pinus jeffreyii). N data suggested that N fixation had occurred…
Publication Type: Journal Article
Properties affecting the consumption of sound and rotten coarse woody debris in northern Idaho: a preliminary investigation using laboratory fires
Year: 2012
This study evaluates the consumption of coarse woody debris in various states of decay. Samples from a northern Idaho mixed-conifer forest were classified using three different classification methods, ignited with two different ignition methods and consumption was recorded. Intrinsic properties that change with decay were measured including carbon to nitrogen ratio, density, heat content, lignin content, moisture content and surface area-to-volume ratio. Consumption for logs in different stages of decay is reported with characterisation of wood properties. Results indicate very decayed coarse…
Publication Type: Journal Article
Climate Change in Grasslands, Shrublands, and Deserts of the Interior American West: A Review and Needs Assessment
Year: 2012
Recent research and species distribution modeling predict large changes in the distributions of species and vegetation types in the western interior of the United States in response to climate change. This volume reviews existing climate models that predict species and vegetation changes in the western United States, and it synthesizes knowledge about climate change impacts on the native fauna and flora of grasslands, shrublands and deserts of the interior American West. Species' responses will depend not only on their physiological tolerances but also on their phenology, establishment…
Publication Type: Report
Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition Under Elevated CO2
Year: 2012
The extent to which terrestrial ecosystems can sequester carbon to mitigate climate change is a matter of debate. The stimulation of arbuscular mycorrhizal fungi (AMF) by elevated atmospheric carbon dioxide (CO 2 ) has been assumed to be a major mechanism facilitating soil carbon sequestration by increasing carbon inputs to soil and by protecting organic carbon from decomposition via aggregation. We present evidence from four independent microcosm and field experiments demonstrating that CO 2 enhancement of AMF results in considerable soil carbon losses. Our findings challenge the assumption…
Publication Type: Journal Article
Fuel treatment impacts on estimated wildfire carbon loss from forests in Montana, Oregon, California, and Arizona
Year: 2012
Using forests to sequester carbon in response to anthropogenically induced climate change is being considered across the globe. A recent U.S. executive order mandated that all federal agencies account for sequestration and emissions of greenhouse gases, highlighting the importance of understanding how forest carbon stocks are influenced by wildfire. This paper reports the effects of the most common forest fuel reduction treatments on carbon pools composed of live and dead biomass as well as potential wildfire emissions from six different sites in four western U.S. states. Additionally, we…
Publication Type: Journal Article
Timing of carbon emissions from global forest clearance
Year: 2012
Land-use change, primarily from conventional agricultural expansion and deforestation, contributes to approximately 17% of global greenhouse-gas emissions. The fate of cleared wood and subsequent carbon storage as wood products, however, has not been consistently estimated, and is largely ignored or oversimplified by most models estimating greenhouse-gas emissions from global land-use conversion. Here, we estimate the fate of cleared wood and timing of atmospheric carbon emissions for 169 countries. We show that 30 years after forest clearance the percentage of carbon stored in wood products…
Publication Type: Journal Article
Long and Short-Term Effects of Fire on Soil Charcoal of a Conifer Forest in Southwest Oregon
Year: 2012
In 2002, the Biscuit Wildfire burned a portion of the previously established, replicated conifer unthinned and thinned experimental units of the Siskiyou Long-Term Ecosystem Productivity (LTEP) experiment, southwest Oregon. Charcoal C in pre and post-fire O horizon and mineral soil was quantified by physical separation and a peroxide-acid digestion method. The abrupt, short-term fire event caused O horizon charcoal C to increase by a factor of ten to >200 kg C ha−1. The thinned wildfire treatment produced less charcoal C than unthinned wildfire and thinned prescribed fire treatments. The…
Publication Type: Journal Article
Commonalities of Carbon Dioxide Exchange in Semiarid Regions with Monsoon and Mediterranean Climates
Year: 2012
Comparing biosphereatmosphere carbon exchange across monsoon (warm-season rainfall) and Mediterranean (cool-season rainfall) regimes can yield information about the interaction between energy and water limitation. Using data collected from eddy covariance towers over grass and shrub ecosystems in Arizona, USA and Almeria, Spain, we used net ecosystem carbon dioxide exchange (NEE), gross ecosystem production (GEP), and other meteorological variables to examine the effects of the different precipitation seasonality. Considerable crossover behavior occurred between the two rainfall regimes. As…
Publication Type: Journal Article
Development of Risk Matrices for Evaluating Climatic Change Responses of Forested Habitats
Year: 2012
We present an approach to assess and compare risk from climate change among multiple species through a risk matrix, in which managers can quickly prioritize for species that need to have strategies developed, evaluated further, or watched. We base the matrix upon earlier work towards the National Climate Assessment for potential damage to infrastructures from climate change. Risk is defined here as the product of the likelihood of an event occurring and the consequences or impact of that event. In the context of species habitats, the likelihood component is related to the potential changes in…
Publication Type: Journal Article
Evidence of Enhanced Freezing Damage in Treeline Plants During Six Years of CO 2 Enrichment and Soil Warming
Year: 2012
Climate change and elevated atmospheric CO 2 levels could increase the vulnerability of plants to freezing. We analyzed tissue damage resulting from naturally occurring freezing events in plants from a longterm in situ CO 2 enrichment (+ 200 ppm, 2001-2009) and soil warming (+ 4°C since 2007) experiment at treeline in the Swiss Alps (Stillberg, Davos). Summer freezing events caused damage in several abundant subalpine and alpine plant species in four out of six years between 2005 and 2010. Most freezing damage occurred when temperatures dropped below -1.5°C two to three weeks after snow melt…
Publication Type: Journal Article
Carbon Dynamics of Forests in Washington, USA: 21st Century Projections Based on Climate-Driven Changes in Fire Regimes
Year: 2012
During the 21st century, climate-driven changes in fire regimes will be a key agent of change in forests of the U.S. Pacific Northwest (PNW). Understanding the response of forest carbon (C) dynamics to increases in fire will help quantify limits on the contribution of forest C storage to climate change mitigation and prioritize forest types for monitoring C storage and fire management to minimize C loss. In this study, we used projections of 21st century area burned to explore the consequences of changes in fire regimes on C dynamics in forests of Washington State. We used a novel empirical…
Publication Type: Journal Article
Fluvial Response to Abrupt Global Warming at the Palaeocene/Eocene Boundary
Year: 2012
Climate strongly affects the production of sediment from mountain catchments as well as its transport and deposition within adjacent sedimentary basins. However, identifying climatic influences on basin stratigraphy is complicated by nonlinearities, feedback loops, lag times, buffering and convergence among processes within the sediment routeing system. The Palaeocene/Eocene thermal maximum (PETM) arguably represents the most abrupt and dramatic instance of global warming in the Cenozoic era and has been proposed to be a geologic analogue for anthropogenic climate change. Here we evaluate the…
Publication Type: Journal Article