Research Database
Displaying 141 - 160 of 180
Mapping the daily progression of large wildland fires using MODIS active fire data
Year: 2014
High temporal resolution information on burnt area is needed to improve fire behaviour and emissions models. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly and active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the timing of burnt area for 16 large wildland fires. For each fire, parameters for the kriging model were defined using variogram analysis. The optimal number of observations used to estimate a pixel’s time of burning varied between four and six among the fires studied. The median standard error from…
Publication Type: Journal Article
The Effectiveness and Limitations of Fuel Modeling Using the Fire and Fuels Extension to the Forest Vegetation Simulator
Year: 2014
Fuel treatment effectiveness is often evaluated with fire behavior modeling systems that use fuel models to generate fire behavior outputs. How surface fuels are assigned,either using one of the 53 stylized fuel models or developing custom fuel models, can affect predicted fire behavior. We collected surface and canopy fuels data beforeand 1, 2, 5, and 8 years after prescribed fire treatments across 10 national forests in California. Two new methods of assigning fuel models within the Fire and FuelsExtension to the Forest Vegetation Simulator were evaluated. Field-based values for dead and…
Publication Type: Journal Article
Challenges of assessing fire and burn severity using field measures, remote sensing and modelling
Year: 2014
Comprehensive assessment of ecological change after fires have burned forests and rangelands is important if we are to understand, predict and measure fire effects. We highlight the challenges in effective assessment of fire and burn severity in the field and using both remote sensing and simulation models. We draw on diverse recent research for guidance on assessing fire effects on vegetation and soil using field methods, remote sensing and models. We suggest that instead of collapsing many diverse, complex and interacting fire effects into a single severity index, the effects of fire should…
Publication Type: Journal Article
Simulated western spruce budworm defoliation reduces torching and crowning potential: a sensitivity analysis using a physics-based fire model
Year: 2014
The widespread, native defoliator western spruce budworm (Choristoneura occidentalis Freeman) reduces canopy fuels, which might affect the potential for surface fires to torch (ignite the crowns of individual trees) or crown (spread between tree crowns). However, the effects of defoliation on fire behaviour are poorly understood. We used a physics-based fire model to examine the effects of defoliation and three aspects of how the phenomenon is represented in the model (the spatial distribution of defoliation within tree crowns, potential branchwood drying and model resolution). Our…
Publication Type: Journal Article
Fire behavior in masticated fuels: A review
Year: 2014
Mastication is an increasingly common fuels treatment that redistributes “ladder” fuels to the forest floor to reduce vertical fuel continuity, crown fire potential, and fireline intensity, but fuel models do not exist for predicting fire behavior in these fuel types. Recent fires burning in masticated fuels have behaved in unexpected and contradictory ways, likely because the shredded, compact fuel created when trees and shrubs are masticated contains irregularly shaped pieces in mixtures quite different from other woody fuels. We review fuels characteristics and fire behavior in masticated…
Publication Type: Journal Article
Assessing forest vegetation and fire simulation model performance after the Cold Springs wildfire, Washington, USA
Year: 2013
Given that resource managers rely on computer simulation models when it is difficult or expensive to obtain vital information directly, it is important to evaluate how well a particular model satisfies applications for which it is designed. The Forest Vegetation Simulator (FVS) is used widely for forest management in the US, and its scope and complexity continue to increase. This paper focuses on the accuracy of estimates made by the Fire and Fuels Extension (FFE-FVS) predictions through comparisons between model outputs and measured post-fire conditions for the Cold Springs wildfire and on…
Publication Type: Journal Article
Examination of the wind speed limit function in the Rothermel surface fire spread model
Year: 2013
The Rothermel surface fire spread model includes a wind speed limit, above which predicted rate of spread is constant. Complete derivation of the wind limit as a function of reaction intensity is given, along with an alternate result based on a changed assumption. Evidence indicates that both the original and the revised wind limits are too restrictive. Wind limit is based in part on data collected on the 7 February 1967 Tasmanian grassland fires. A reanalysis of the data indicates that these fires might not have been spreading in fully cured continuous grasslands, as assumed. In addition,…
Publication Type: Journal Article
Modelling conditional burn probability patterns for large wildland fires
Year: 2013
We present a technique for modelling conditional burn probability patterns in two dimensions for large wildland fires. The intended use for the model is strategic program planning when information about future fire weather and event durations is unavailable and estimates of the average probabilistic shape and extent of large fires on a landscape are needed. To model average conditional burn probability patterns, we organised historical fire data from Yellowstone National Park, USA, into a set of grids; one grid per fire. We captured various spatial relationships inherent in the gridded data…
Publication Type: Journal Article
Living in a tinderbox: wildfire risk perceptions and mitigating behaviors
Year: 2013
The loss of homes to wildfires is an important issue in the USA and other countries. Yet many homeowners living in fire-prone areas do not undertake mitigating actions, such as clearing vegetation, to decrease the risk of losing their home. To better understand the complexity of wildfire risk-mitigation decisions and the role of perceived risk, we conducted a survey of homeowners in a fire-prone area of the front range of the Rocky Mountains in Colorado. We examine the relationship between perceived wildfire risk ratings and risk-mitigating behaviours in two ways. First, we model wildfire…
Publication Type: Journal Article
ArcFuels10 System Overview
Year: 2013
Fire behavior modeling and geospatial analyses can provide tremendous insight for land managers as they grapple with the complex problems frequently encountered in wildfire risk assessments and fire and fuels management planning. Fuel management often is a particularly complicated process in which the benefits and potential impacts of fuel treatments need to be demonstrated in the context of land management goals and public expectations. The fuel treatment planning process is complicated by the lack of data assimilation among fire behavior models and weak linkages to geographic information…
Publication Type: Report
Assessing potential climate change effects on vegetation using a linked model approach
Year: 2013
We developed a process that links the mechanistic power of dynamic global vegetation models with the detailed vegetation dynamics of state-and-transition models to project local vegetation shifts driven by projected climate change. We applied our approach to central Oregon (USA) ecosystems using three climate change scenarios to assess potential future changes in species composition and community structure. Our results suggest that: (1) legacy effects incorporated in state-and-transition models realistically dampen climate change effects on vegetation; (2) species-specific response to fire…
Publication Type: Journal Article
Current status and future needs of the BehavePlus fire modeling system
Year: 2013
The BehavePlus Fire Modeling System is among the most widely used systems for wildland fire prediction. It is designed for use in a range of tasks including wildfire behaviour prediction, prescribed fire planning, fire investigation, fuel hazard assessment, fire model understanding, communication and research. BehavePlus is based on mathematical models for fire behaviour, fire effects and fire environment. It is a point system for which conditions are constant for each calculation, but is designed to encourage examination of the effect of a range of conditions through tables and graphs.…
Publication Type: Journal Article
Optimising fuel treatments over time and space
Year: 2013
Fuel treatments have been widely used as a tool to reduce catastrophic wildland fire risks in many forests around the world. However, it is a challenging task for forest managers to prioritise where, when and how to implement fuel treatments across a large forest landscape. In this study, an optimisation model was developed for long-term fuel management decisions at a landscape scale. Using a simulated annealing algorithm, the model optimises locations and timing of fuel treatments, while considering changes in forest dynamics over time, fire behaviour and spread, values at risk, and…
Publication Type: Journal Article
Climate Change and Disruptions to Global Fire Activity
Year: 2012
Future disruptions to fire activity will threaten ecosystems and human well-being throughout the world, yet there are few fire projections at global scales and almost none from a broad range of global climate models (GCMs). Here we integrate global fire datasets and environmental covariates to build spatial statistical models of fire probability at a 0.58 resolution and examine environmental controls on fire activity. Fire models are driven by climate norms from 16 GCMs (A2 emissions scenario) to assess the magnitude and direction of change over two time periods, 2010–2039 and 2070–2099. From…
Publication Type: Journal Article
Climate Change, Forests, Fire, Water, and Fish: Building Resilient Landscapes, Streams, and Managers
Year: 2012
Fire will play an important role in shaping forest and stream ecosystems as the climate changes. Historic observations show increased dryness accompanying more widespread fire and forest die-off. These events punctuate gradual changes to ecosystems and sometimes generate stepwise changes in ecosystems. Climate vulnerability assessments need to account for fire in their calculus. The biophysical template of forest and stream ecosystems determines much of their response to fire. This report describes the framework of how fire and climate change work together to affect forest and fish…
Publication Type: Report
Projecting future distributions of ecosystem climate niches: Uncertainties and management applications
Year: 2012
Projecting future distributions of ecosystems or species climate niches has widely been used to assess the potential impacts of climate change. However, variability in such projections for the future periods, particularly the variability arising from uncertain future climates, remains a critical challenge for incorporating these projections into climate change adaptation strategies. We combined the use of a robust statistical modeling technique with a simple consensus approach consolidating projected outcomes for multiple climate change scenarios, and exemplify how the results could guide…
Publication Type: Journal Article
Eco-Evolutionary Responses of Biodiversity to Climate Change
Year: 2012
Climate change is predicted to alter global species diversity, the distribution of human pathogens and ecosystem services. Forecasting these changes and designing adequate management of future ecosystem services will require predictive models encompassing the most fundamental biotic responses. However, most present models omit important processes such as evolution and competition. Here we develop a spatially explicit eco-evolutionary model of multi-species responses to climate change. We demonstrate that both dispersal and evolution differentially mediate extinction risks and biodiversity…
Publication Type: Journal Article
A Comprehensive Guide to Fuel Management Practices for Dry Mixed Conifer Forests in the Northwestern United States
Year: 2012
This guide describes the benefits, opportunities, and trade-offs concerning fuel treatments in the dry mixed conifer forests of northern California and the Klamath Mountains, Pacific Northwest Interior, northern and central Rocky Mountains, and Utah. Multiple interacting disturbances and diverse physical settings have created a forest mosaic with historically low- to mixed-severity fire regimes. Analysis of forest inventory data found nearly 80 percent of these forests rate hazardous by at least one measure and 20 to 30 percent rate hazardous by multiple measures. Modeled mechanical…
Publication Type: Report
Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests
Year: 2012
We examined the effects of three early season (spring) prescribed fires on burn severity patterns of summer wildfires that occurred 1–3 years post- treatment in a mixed conifer forest in central Idaho. Wildfire and prescribed fire burn severities were estimated as the difference in normalized burn ratio (dNBR) using Landsat imagery. We used GIS derived vegetation, topography, and treatment variables to generate models predicting the wildfire burn severity of 1286–5500 30- m pixels within and around treated areas. We found that wildfire severity was significantly lower in treated areas than in…
Publication Type: Journal Article