Research Database
Displaying 161 - 180 of 208
Examination of the wind speed limit function in the Rothermel surface fire spread model
Year: 2013
The Rothermel surface fire spread model includes a wind speed limit, above which predicted rate of spread is constant. Complete derivation of the wind limit as a function of reaction intensity is given, along with an alternate result based on a changed assumption. Evidence indicates that both the original and the revised wind limits are too restrictive. Wind limit is based in part on data collected on the 7 February 1967 Tasmanian grassland fires. A reanalysis of the data indicates that these fires might not have been spreading in fully cured continuous grasslands, as assumed. In addition,…
Publication Type: Journal Article
Crown fire behavior characteristics and prediction in conifer forests: a state-of-knowledge synthesis
Year: 2013
Joint Fire Science Program (JFSP) project 09-S-03-1 was undertaken in response to JFSP Project Announcement No. FA-RFA09-0002 with respect to a synthesis on extreme fire behavior or more specifically a review and analysis of the literature dealing with certain features of crown fire behavior in conifer forests in the United States and adjacent regions of Canada. The key findings presented are organized along nine topical areas: types of crown fires; crown fire initiation; crown fire propagation; crown fire rate of spread; crown fire intensity and flame zone characteristics; crown fire area…
Publication Type: Report
Capturing Fire: RxCadre Takes Fire Measurements to a Whole New Level
Year: 2013
Models of fire behavior and effects do not always make accurate predictions, and there is not enough systematically gathered data to validate them. To help advance fire behavior and fire effects model development, the Joint Fire Science Program is helping fund the RxCADRE, which is made up of scientists from the U.S. Forest Service and several universities who orchestrate and collect data on prescribed burns in the southeastern United States. The RxCADRE-prescribed burns are yielding a comprehensive dataset of fire behavior, fire effects, and smoke chemistry and dynamics, with measurements…
Publication Type: Report
Modelling conditional burn probability patterns for large wildland fires
Year: 2013
We present a technique for modelling conditional burn probability patterns in two dimensions for large wildland fires. The intended use for the model is strategic program planning when information about future fire weather and event durations is unavailable and estimates of the average probabilistic shape and extent of large fires on a landscape are needed. To model average conditional burn probability patterns, we organised historical fire data from Yellowstone National Park, USA, into a set of grids; one grid per fire. We captured various spatial relationships inherent in the gridded data…
Publication Type: Journal Article
Assessing forest vegetation and fire simulation model performance after the Cold Springs wildfire, Washington, USA
Year: 2013
Given that resource managers rely on computer simulation models when it is difficult or expensive to obtain vital information directly, it is important to evaluate how well a particular model satisfies applications for which it is designed. The Forest Vegetation Simulator (FVS) is used widely for forest management in the US, and its scope and complexity continue to increase. This paper focuses on the accuracy of estimates made by the Fire and Fuels Extension (FFE-FVS) predictions through comparisons between model outputs and measured post-fire conditions for the Cold Springs wildfire and on…
Publication Type: Journal Article
Foliar moisture content variations in lodgepole pine over the diurnal cycle during the red stage of mountain pine beetle attack
Year: 2013
Widespread outbreaks of the mountain pine beetle (Dendroctonus ponderosae Hopkins) in the lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests of North America have produced stands with significant levels of recent tree mortality. The needle foliage from recently attacked trees typically turns red within one to two years of attack indicating successful colonization by the beetle and tree death. Attempts to model crown fire potential in these stands have assumed that the moisture content of dead foliage responds similarly to changes in air temperature and relative…
Publication Type: Journal Article
Fourmile Canyon Fire Findings
Year: 2012
The Fourmile Canyon Fire burned in the fall of 2010 in the Rocky Mountain Front Range adjacent to Boulder, Colorado. The fire occurred in steep, rugged terrain, primarily on privately owned mixed ponderosa pine and Douglas-fir forests. The fire started on September 6 when the humidity of the air was very dry (≈ <7%) and the winds were steadily blowing in the range of 15 miles per hour and gusting to over 40 miles per hour. These conditions prevailed for most of the first day when the fire burned approximately 5,700 acres and destroyed 162 homes. Because of the windy conditions, aircraft…
Publication Type: Report
Atmospheric Interactions with Wildland Fire Behaviour I. Basic Surface Interactions, Vertical Profiles and Synoptic Structures
Year: 2012
This paper is the first of two reviewing scientific literature from 100 years of research addressing interactions between the atmosphere and fire behaviour. These papers consider research on the interactions between the fuels burning at any instant and the atmosphere, and the interactions between the atmosphere and those fuels that will eventually burn in a given fire. This first paper reviews the progression from the surface atmospheric properties of temperature, humidity and wind to horizontal and vertical synoptic structures and ends with vertical atmospheric profiles. (The companion paper…
Publication Type: Journal Article
A Comprehensive Guide to Fuel Management practices for Dry Mixed Conifer Forests in the Northwestern United States
Year: 2012
This guide describes the benefits, opportunities, and trade-offs concerning fuel treatments in the dry mixed conifer forests of northern California and the Klamath Mountains, Pacific Northwest Interior, northern and central Rocky Mountains, and Utah. Multiple interacting disturbances and diverse physical settings have created a forest mosaic with historically low- to mixed-severity fire regimes. Analysis of forest inventory data found nearly 80 percent of these forests rate hazardous by at least one measure and 20 to 30 percent rate hazardous by multiple measures. Modeled mechanical…
Publication Type: Report
Pattern and process of prescribed fires influence effectiveness at reducing wildfire severity in dry coniferous forests
Year: 2012
We examined the effects of three early season (spring) prescribed fires on burn severity patterns of summer wildfires that occurred 1–3 years post- treatment in a mixed conifer forest in central Idaho. Wildfire and prescribed fire burn severities were estimated as the difference in normalized burn ratio (dNBR) using Landsat imagery. We used GIS derived vegetation, topography, and treatment variables to generate models predicting the wildfire burn severity of 1286–5500 30- m pixels within and around treated areas. We found that wildfire severity was significantly lower in treated areas than in…
Publication Type: Journal Article
Projected range shifting by montane mammals under climate change: implications for Cascadia's National Parks
Year: 2012
We examined potential impacts of climate change over the next century on eight mammal species of conservation concern in western Washington State, under four warming scenarios. Using two species distribution models, including a logistic regression-based model and the "maximum entropy" (MaxEnt) model, we predicted the location and extent of the potential current and future range of each species based on a suite of environmental and geographical variables. Both models projected significant losses in range size within the focal area over the next century across all warming scenarios. Projections…
Publication Type: Journal Article
Eco-Evolutionary Responses of Biodiversity to Climate Change
Year: 2012
Climate change is predicted to alter global species diversity, the distribution of human pathogens and ecosystem services. Forecasting these changes and designing adequate management of future ecosystem services will require predictive models encompassing the most fundamental biotic responses. However, most present models omit important processes such as evolution and competition. Here we develop a spatially explicit eco-evolutionary model of multi-species responses to climate change. We demonstrate that both dispersal and evolution differentially mediate extinction risks and biodiversity…
Publication Type: Journal Article
Climate Change, Forests, Fire, Water, and Fish: Building Resilient Landscapes, Streams, and Managers
Year: 2012
Fire will play an important role in shaping forest and stream ecosystems as the climate changes. Historic observations show increased dryness accompanying more widespread fire and forest die-off. These events punctuate gradual changes to ecosystems and sometimes generate stepwise changes in ecosystems. Climate vulnerability assessments need to account for fire in their calculus. The biophysical template of forest and stream ecosystems determines much of their response to fire. This report describes the framework of how fire and climate change work together to affect forest and fish…
Publication Type: Report
A Review of Recent Advances in Risk Analysis for Wildfire Management
Year: 2012
Risk analysis evolved out of the need to make decisions concerning highly stochastic events, and is well suited to analyse the timing, location and potential effects of wildfires. Over the past 10 years, the application of risk analysis to wildland fire management has seen steady growth with new risk-based analytical tools that support a wide range of fire and fuels management planning scales from individual incidents to national, strategic interagency programs. After a brief review of the three components of fire risk – likelihood, intensity and effects – this paper reviews recent advances…
Publication Type: Journal Article
Climate Change and Disruptions to Global Fire Activity
Year: 2012
Future disruptions to fire activity will threaten ecosystems and human well-being throughout the world, yet there are few fire projections at global scales and almost none from a broad range of global climate models (GCMs). Here we integrate global fire datasets and environmental covariates to build spatial statistical models of fire probability at a 0.58 resolution and examine environmental controls on fire activity. Fire models are driven by climate norms from 16 GCMs (A2 emissions scenario) to assess the magnitude and direction of change over two time periods, 2010–2039 and 2070–2099. From…
Publication Type: Journal Article
Meta-analysis of avian and small-mammal response to fire severity and fire surrogate treatments in US fire-prone forests
Year: 2012
Management in fire-prone ecosystems relies widely upon application of prescribed fire and/or fire surrogate (e.g., forest thinning) treatments to maintain biodiversity and ecosystem function. Recently, published literature examining wildlife response to fire and fire management has increased rapidly. However, none of this literature has been synthesized quantitatively, precluding assessment of consistent patterns of wildlife response among treatment types. Using meta-analysis, we examined the scientific literature on vertebrate demographic responses to burn severity (low/moderate, high), fire…
Publication Type: Journal Article
Afternoon Rain More Likely Over Drier Soils
Year: 2012
Land surface properties, such as vegetation cover and soil moisture, influence the partitioning of radiative energy between latent and sensible heat fluxes in daytime hours. During dry periods, soil-water deficit can limit evapotranspiration, leading to warmer and drier conditions in the lower atmosphere. Soil moisture can influence the development of convective storms through such modifications of low-level atmospheric temperature and humidity, which in turn feeds back on soil moisture. Yet there is considerable uncertainty in how soil moisture affects convective storms across the world,…
Publication Type: Journal Article
A Comprehensive Guide to Fuel Management Practices for Dry Mixed Conifer Forests in the Northwestern United States
Year: 2012
This guide describes the benefits, opportunities, and trade-offs concerning fuel treatments in the dry mixed conifer forests of northern California and the Klamath Mountains, Pacific Northwest Interior, northern and central Rocky Mountains, and Utah. Multiple interacting disturbances and diverse physical settings have created a forest mosaic with historically low- to mixed-severity fire regimes. Analysis of forest inventory data found nearly 80 percent of these forests rate hazardous by at least one measure and 20 to 30 percent rate hazardous by multiple measures. Modeled mechanical…
Publication Type: Report
Using niche models with climate projections to inform conservation management decisions
Year: 2012
Conservation science strives to inform management decisions. Applying niche models in concert with future climate projections to project species vulnerability to extinction, range size loss, or distribution shifts has emerged as a potentially useful tool for informing resource management decisions. Making climate change niche modeling useful to conservation decisions requires centering studies on the types of decisions that are made regarding the focal taxa of a niche model study. Recent recommendations for climate adaptation strategies suggest four types of decision makers: policy, habitat…
Publication Type: Journal Article
Spatio-temporal prediction of site index based on forest inventories and climate change scenarios
Year: 2012
A methodological framework is provided for the quantification of climate change effects on site index. Spatio-temporal predictions of site index are derived for six major tree species in the German state of Baden-Württemberg using simplified universal kriging (UK) based on large data sets from forest inventories and a climate sensitive site-index model. It is shown by a simulation study that, with the underlying large sample size, residual kriging using ordinary least squares (OLS) estimates of the mean function leads to an approximately unbiased spatial predictor. Moreover, the simulated…
Publication Type: Journal Article