Research Database
Displaying 61 - 80 of 188
Using soil moisture information to better understand and predict wildfire danger: a review of recent developments and outstanding questions
Year: 2023
Soil moisture conditions are represented in fire danger rating systems mainly through simple drought indices based on meteorological variables, even though better sources of soil moisture information are increasingly available. This review summarises a growing body of evidence indicating that greater use of in situ, remotely sensed, and modelled soil moisture information in fire danger rating systems could lead to better estimates of dynamic live and dead herbaceous fuel loads, more accurate live and dead fuel moisture predictions, earlier warning of wildfire danger, and better forecasts of…
Publication Type: Journal Article
Social vulnerability of the people exposed to wildfires in U.S. West Coast states
Year: 2023
Understanding of the vulnerability of populations exposed to wildfires is limited. We used an index from the U.S. Centers for Disease Control and Prevention to assess the social vulnerability of populations exposed to wildfire from 2000–2021 in California, Oregon, and Washington, which accounted for 90% of exposures in the western United States. The number of people exposed to fire from 2000–2010 to 2011–2021 increased substantially, with the largest increase, nearly 250%, for people with high social vulnerability. In Oregon and Washington, a higher percentage of exposed people were highly…
Publication Type: Journal Article
Exploring and Testing Wildfire Risk Decision-Making in the Face of Deep Uncertainty
Year: 2023
We integrated a mechanistic wildfire simulation system with an agent-based landscape change model to investigate the feedbacks among climate change, population growth, development, landowner decision-making, vegetative succession, and wildfire. Our goal was to develop an adaptable simulation platform for anticipating risk-mitigation tradeoffs in a fire-prone wildland–urban interface (WUI) facing conditions outside the bounds of experience. We describe how five social and ecological system (SES) submodels interact over time and space to generate highly variable alternative futures even within…
Publication Type: Journal Article
Quantifying the smoke-related public health trade-offs of forest management
Year: 2023
Prescribed burning can mitigate extreme wildfire risk and reduce total smoke emissions. Yet prescribed burns’ emissions may also contribute to smoke exposures in nearby communities. Incorporating public health considerations into forest management planning efforts may help reduce prescribed burn-related exposure impacts. We present a methodological framework linking landscape ecology, air-quality modelling and health impact assessment to quantify the air-quality and health impacts of specific management strategies. We apply this framework to six forest management scenarios proposed for a…
Publication Type: Journal Article
Performance of Fire Danger Indices and Their Utility in Predicting Future Wildfire Danger Over the Conterminous United States
Year: 2023
Predicting current and future wildfire frequency and size is central to wildfire control and management. Multiple fire danger indices (FDIs) that incorporate weather and fuel conditions have been developed and utilized to support wildfire predictions and risk assessment. However, the scale-dependent performance of individual FDIs remains poorly understood, which leads to large uncertainty in the estimated fire sizes under climate change. Here, we calculate four commonly used FDIs over the conterminous United States using high-resolution (4 km) climate and fuel data sets for the 1984–2019…
Publication Type: Journal Article
The persistence of smoke VOCs indoors: Partitioning, surface cleaning, and air cleaning in a smoke-contaminated house
Year: 2023
Wildfires are increasing in frequency, raising concerns that smoke can permeate indoor environments and expose people to chemical air contaminants. To study smoke transformations in indoor environments and evaluate mitigation strategies, we added smoke to a test house. Many volatile organic compounds (VOCs) persisted days following the smoke injection, providing a longer-term exposure pathway for humans. Two time scales control smoke VOC partitioning: a faster one (1.0 to 5.2 hours) that describes the time to reach equilibrium between adsorption and desorption processes and a slower one (4.8…
Publication Type: Journal Article
DUET - Distribution of Understory using Elliptical Transport: A mechanistic model of leaf litter and herbaceous spatial distribution based on tree canopy structure
Year: 2023
Heterogeneity in surface fuels produced by overstory trees and understory vegetation is a major driver of fire behavior and ecosystem dynamics. Previous attempts at predicting tree leaf and needle litter accumulation over time have been constrained in scope to probabilistic models that consider a limited number of key factors influencing tree litter dispersal patterns and decomposition processes. We present a mechanistic model for estimating variation in surface fuels called the Distribution of Understory using Elliptical Transport (DUET). DUET uses a pre-generated voxelated canopy array and…
Publication Type: Journal Article
Long-term mortality burden trends attributed to black carbon and PM2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study
Year: 2023
Background
Long-term improvements in air quality and public health in the continental USA were disrupted over the past decade by increased fire emissions that potentially offset the decrease in anthropogenic emissions. This study aims to estimate trends in black carbon and PM2·5 concentrations and their attributable mortality burden across the USA.
Methods
In this study, we derived daily concentrations of PM2·5 and its highly toxic black carbon component at a 1-km resolution in the USA from 2000 to 2020 via deep learning that integrated big data from satellites, models, and surface…
Publication Type: Journal Article
Modeling Wildland Firefighters’ Assessments of Structure Defensibility
Year: 2023
In wildland–urban interface areas, firefighters balance wildfire suppression and structure protection. These tasks are often performed under resource limitations, especially when many structures are at risk. To address this problem, wildland firefighters employ a process called “structure triage” to prioritize structure protection based on perceived defensibility. Using a dataset containing triage assessments of thousands of structures within the Western US, we developed a machine learning model that can improve the understanding of factors contributing to assessed structure defensibility.…
Publication Type: Journal Article
Evaluating the potential role of federal air quality standards in constraining applications of prescribed fire in the western United States
Year: 2023
Prescribed fire is a useful tool for building resilient landscapes in fire-prone areas across the globe. In the western U.S., prescribed fire is employed by federal, state, and Tribal land managers and planned during particular meteorological and air quality conditions to manage air quality impacts. As agencies prepare to plan and permit more prescribed fire, an ongoing question will be whether existing air quality conditions constrain the potential for more prescribed fire. We performed a set of spatial and statistical analyses to evaluate how prescribed burns are potentially constrained by…
Publication Type: Journal Article
Environmental justice analysis of wildfire-related PM2.5 exposure using low-cost sensors in California
Year: 2023
Highlights • Wildfire may exacerbate health disparities & environmental justice concerns. • Low-cost PM2.5 sensors improve wildfire impact assessment. • Increases in PM2.5 correlate with wildfire activity (within 30 km). • Indoor increases in PM2.5 concentrations mimic outdoor PM2.5 increase patterns. The increasing number and severity of wildfires is negatively impacting air quality for millions of California residents each year. Community exposure to PM2.5 in two main population centers (San Francisco Bay area and Los Angeles County area) was assessed using the low-cost PurpleAir sensor…
Publication Type: Journal Article
Projecting live fuel moisture content via deep learning
Year: 2023
Background: Live fuel moisture content (LFMC) is a key environmental indicator used to monitor for high wildfire risk conditions. Many statistical models have been proposed to predict LFMC from remotely sensed data; however, almost all these estimate current LFMC (nowcasting models). Accurate modelling of LFMC in advance (projection models) would provide wildfire managers with more timely information for assessing and preparing for wildfire risk. Aims: The aim of this study was to investigate the potential for deep learning models to predict LFMC across the continental United States 3 months…
Publication Type: Journal Article
Atmospheric turbulence and wildland fires: a review
Year: 2023
The behaviour of wildland fires and the dispersion of smoke from those fires can be strongly influenced by atmospheric turbulent flow. The science to support that assertion has developed and evolved over the past 100+ years, with contributions from laboratory and field observations, as well as modelling experiments. This paper provides a synthesis of the key laboratory- and field-based observational studies focused on wildland fire and atmospheric turbulence connections that have been conducted from the early 1900s through 2021. Included in the synthesis are reports of anecdotal…
Publication Type: Journal Article
Comparing particulate morphology generated from human- made cellulosic fuels to natural vegetative fuels
Year: 2022
Background: In wildland–urban interface (WUI) fires, particulates from the combustion of both natural vegetative fuels and engineered cellulosic fuels may have deleterious effects on the environment. Aims: The research was conducted to investigate the morphology of the particulate samples generated from the combustion of oriented strand board (OSB). Findings were compared to the particulate samples collected from the combustion of noble-fir branches. Methods: The exposure conditions were varied to induce either smouldering combustion or flaming combustion of the specimens. Particulate samples…
Publication Type: Journal Article
Lifestyle and environmental factors may induce airway and systemic inflammation in firefighters
Year: 2022
Health status depends on multiple genetic and non-genetic factors. Nonheritable factors (such as lifestyle and environmental factors) have stronger impact on immune responses than genetic factors. Firefighters work is associated with exposure to air pollution and heat stress, as well as: extreme physical effort, mental stress, or a changed circadian rhythm, among others. All these factors can contribute to both, short-term and long-term impairment of the physical and mental health of firefighters. Increased levels of some inflammatory markers, such as pro-inflammatory cytokines or C-reactive…
Publication Type: Journal Article
Multi-Objective Scheduling of Fuel Treatments to Implement a Linear Fuel Break Network
Year: 2022
We developed and applied a spatial optimization algorithm to prioritize forest and fuel management treatments within a proposed linear fuel break network on a 0.5 million ha Western US national forest. The large fuel break network, combined with the logistics of conducting forest and fuel management, requires that treatments be partitioned into a sequence of discrete projects, individually implemented over the next 10–20 years. The original plan for the network did not consider how linear segments would be packaged into projects and how projects would be prioritized for treatments over time,…
Publication Type: Journal Article
Comparing particulate morphology generated from human-made cellulosic fuels to natural vegetative fuels
Year: 2022
Background: In wildland–urban interface (WUI) fires, particulates from the combustion of both natural vegetative fuels and engineered cellulosic fuels may have deleterious effects on the environment. Aims: The research was conducted to investigate the morphology of the particulate samples generated from the combustion of oriented strand board (OSB). Findings were compared to the particulate samples collected from the combustion of noble-fir branches. Methods: The exposure conditions were varied to induce either smouldering combustion or flaming combustion of the specimens. Particulate samples…
Publication Type: Journal Article
Comparing smoke emissions and impacts under alternative forest management regimes
Year: 2022
Smoke from wildfires has become a growing public health issue around the world but especially in western North America and California. At the same time, managers and scientists recommend thinning and intentional use of wildland fires to restore forest health and reduce smoke from poorly controlled wildfires. Because of the changing climate and management paradigms, the evaluation of smoke impacts needs to shift evaluations from the scale of individual fire events to long-term fire regimes and regional impacts under different management strategies. To confront this challenge, we integrated…
Publication Type: Journal Article
Evaluating Satellite Fire Detection Products and an Ensemble Approach for Estimating Burned Area in the United States
Year: 2022
Fire location and burning area are essential parameters for estimating fire emissions. However, ground-based fire data (such as fire perimeters from incident reports) are often not available with the timeliness required for real-time forecasting. Fire detection products derived from satellite instruments such as the GOES-16 Advanced Baseline Imager or MODIS, on the other hand, are available in near real-time. Using a ground fire dataset of 2699 fires during 2017–2019, we fit a series of linear models that use multiple satellite fire detection products (HMS aggregate fire product, GOES-16,…
Publication Type: Journal Article
Strategies to reduce wildfire smoke in frequently impacted communities in south-western Oregon
Year: 2022
Background: Efforts to mitigate the adverse effects of wildfire smoke have focused on modifying human behaviour to minimise individual exposure, largely accomplished by providing smoke forecasts, monitoring, and consistent public messaging. Aims: To identify a strategy to reduce the amount of wildfire smoke in frequently impacted communities. Methods: We identify frequent air pathways that transport smoke into five communities in south-western Oregon. We present a case study comparing the potential change in the 24-h average PM2.5 concentration between fuels burned during a wildfire which are…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 2
- 3
- 4
- 5
- 6
- …
- Next page
- Last page