Research Database
Displaying 21 - 40 of 188
Wildland fire entrainment: The missing link between wildland fire and its environment
Year: 2025
Wildfires are growing in destructive power, and accurately predicting the spread and intensity of wildland fire is essential for managing ecological and societal impacts. No current operational models used for fire behavior prediction resolve critical fire-atmospheric coupling or nonlocal influences of the fire environment, rendering them inadequate in accounting for the range of wildland fire behavior scenarios under increasingly novel fuel and climate conditions. Here, we present a new perspective on a dominant fire-atmospheric feedback mechanism, which we term wildland fire entrainment (…
Publication Type: Journal Article
Role of Forensic Anthropology in the Search and Recovery of Fatal Wildland Fire Victims
Year: 2025
The search and recovery process of fatal fire victims is one of the greatest challenges in forensic anthropology, especially in large-scale wildland fire disasters. Burned human remains can exhibit significant variation in their degree of preservation depending on the temperature of the fire, the length of exposure to the heat source, and intrinsic characteristics of the victim (e.g., body size, age, and bone density). Wildland fire victims typically exhibit characteristics of the final stages of burning (i.e., nearly complete to complete calcination). The search for burned human remains is…
Publication Type: Journal Article
Evaluating a simulation-based wildfire burn probability map for the conterminous US
Year: 2025
Background: Wildfire simulation models are used to derive maps of burn probability (BP) based on fuels, weather, topography and ignition locations, and BP maps are key components of wildfire risk assessments.Aims: Few studies have compared BP maps with real-world fires to evaluate their suitability for near-future risk assessment. Here, we evaluated a BP map for the conterminous US based on the large fire simulation model FSim.Methods: We compared BP with observed wildfires from 2016 to 2022 across 128 regions representing similar fire regimes (‘pyromes’). We…
Publication Type: Journal Article
Changing fire regimes in the Great Basin USA
Year: 2025
Wildfire is a natural disturbance in landscapes of the Western United States, but the effects and extents of fire are changing. Differences between historical and contemporary fire regimes can help identify reasons for observed changes in landscape composition. People living and working in the Great Basin, USA, are observing altered fire conditions, but spatial information about the degree and direction of change and departure from historical fire regimes is lacking. This study estimates how fire regimes have changed in the major Great Basin vegetation types over the past 60 years with…
Publication Type: Journal Article
Decreasing frequency of low and moderate fire weather days may be contributing to large wildfire occurrence in the northern Sierra Nevada
Year: 2025
Previous analyses identified large-scale climatic patterns contributing to greater fuel aridity as drivers of recent dramatic increases in wildfire activity throughout California. This study revisits an approach to investigate more local fire weather patterns in the northern Sierra Nevada; a region within California that has experienced exceptionally high wildfire activity recently. The annual percentages of fire season days above 90th and 95th percentile Energy Release Component (ERC) values were very low prior to 1994 (Fig. 3). Since 1994, years with noticeable percentages of exceedances (…
Publication Type: Journal Article
Evaluating fuelbreak strategies for compartmentalizing a fire-prone forest landscape in Alberta, Canada
Year: 2025
Large wildfires, the dominant natural disturbance type in North American forests, can cause significant damage to human infrastructure. One well-known approach to reduce the threat of wildfires is the strategic removal of forest fuels in linear firebreaks that segment forest landscapes into distinct compartments. However, limited human and financial resources can make it difficult to plan compartmentalization effectively. In this study, we developed a simulation-optimization approach to assist with the planning of wildfire risk mitigation efforts in the Red Rock-Prairie Creek area of Alberta…
Publication Type: Journal Article
Prescribed fire, managed burning, and previous wildfires reduce the severity of a southwestern US gigafire
Year: 2025
In many parts of the western United States, wildfires are becoming larger and more severe, threatening the persistence of forest ecosystems. Understanding the ways in which management activities such as prescribed fire and managed wildfire can mitigate fire severity is essential for developing effective forest conservation strategies. We evaluated the effects of previous fuels reduction treatments, including prescribed fire and wildfire managed for resource benefit, and other wildfires on the burn severity of the 2022 Black Fire in southwestern New Mexico, USA. The Black Fire burned over 131,…
Publication Type: Journal Article
COVID‐19 Fueled an Elevated Number of Human‐Caused Ignitions in the Western United States During the 2020 Wildfire Season
Year: 2025
The area burned in the western United States during the 2020 fire season was the greatest in the modern era. Here we show that the number of human-caused fires in 2020 also was elevated, nearly 20% higher than the 1992–2019 average. Although anomalously dry conditions enabled ignitions to spread and contributed to record area burned, these conditions alone do not explain the surge in the number of human-caused ignitions. We argue that behavioral shifts aimed at curtailing the spread of COVID-19 altered human-environment interactions to favor increased ignitions. For example, the number of…
Publication Type: Journal Article
Pathways for sustainable coexistence with wildfires
Year: 2024
Sustainable coexistence with wildfire requires overcoming vicious cycles that trap socio-ecological systems in maladaptive states. A carefully coordinated programme of innovation, education and governance, the ‘wildfire adaptation triad’, is essential for escaping maladaptation across national, community and individual scales.
Publication Type: Journal Article
Fuel types misrepresent forest structure and composition in interior British Columbia: a way forward
Year: 2024
A clear understanding of the connectivity, structure, and composition of wildland fuels is essential for effective wildfire management. However, fuel typing and mapping are challenging owing to a broad diversity of fuel conditions and their spatial and temporal heterogeneity. In Canada, fuel types and potential fire behavior are characterized using the Fire Behavior Prediction (FBP) System, which uses an association approach to categorize vegetation into 16 fuel types based on stand structure and composition. In British Columbia (BC), provincial and national FBP System fuel type maps are…
Publication Type: Journal Article
From flexibility to feasibility: identifying the policy conditions that support the management of wildfire for objectives other than full suppression
Year: 2024
Background. Intentional management of naturally ignited wildfires has emerged as a valuable tool for addressing the social and ecological consequences of a century of fire exclusion in policy and practice. Policy in the United States now allows wildfires to be managed for suppression and other than full suppression (OTFS) objectives simultaneously, giving flexibility to local decision makers. Aims. To extend existing research on the history of wildfire management, investigate how wildfire professionals interpret current policy with respect to OTFS management, and better understand how they…
Publication Type: Journal Article
Application of the wildland fire emissions inventory system to estimate fire emissions on forest lands of the United States
Year: 2024
BackgroundForests are significant terrestrial biomes for carbon storage, and annual carbon accumulation of forest biomass contributes offsets affecting net greenhouse gases in the atmosphere. The immediate loss of stored carbon through fire on forest lands reduces the annual offsets provided by forests. As such, the United States reporting includes annual estimates of direct fire emissions in conjunction with the overall forest stock and change estimates as a part of national greenhouse gas inventories within the United Nations Framework Convention on Climate Change. Forest fire emissions…
Publication Type: Journal Article
Climate change mitigation-adaptation relationships in forest management: perspectives from the fire-prone American West
Year: 2024
Minimizing negative impacts of climate change on human and natural systems requires mitigation of greenhouse gas emissions and adaptation to new climate conditions. Forestry provides grounds to study the relationship between these two concepts: carbon flux and storage are ecosystem services of forests, while forests are growing increasingly vulnerable to climate-driven disturbances. We examined the practice and interplay of mitigation and adaptation in the American West, which is a testbed for the conceptual balance between carbon cycling and growing climate-related risk given its abundance…
Publication Type: Journal Article
Wildfire Smoke Exposure and Incident Dementia
Year: 2024
Importance: Long-term exposure to total fine particulate matter (PM2.5) is a recognized dementia risk factor, but less is known about wildfire-generated PM2.5, an increasingly common PM2.5 source. Objective: To assess the association between long-term wildfire and nonwildfire PM2.5 exposure and risk of incident dementia. Design, Setting, and Participants: This open cohort study was conducted using January 2008 to December 2019 electronic health record (EHR) data among members of Kaiser Permanente Southern California (KPSC), which serves…
Publication Type: Journal Article
Using focus groups for knowledge sharing: Tracking emerging pandemic impacts on USFS wildland fire operations
Year: 2024
In early 2020 the US Forest Service (USFS) recognized the need to gather real-time information from its wildland fire management personnel about their challenges and adaptations during the unfolding COVID-19 pandemic. The USFS conducted 194 virtual focus groups to address these concerns, over 32 weeks from March 2020 to October 2020. This management effort provided an opportunity for an innovative practice-based research study. Here, we outline a novel methodological approach (weekly, iterative focus groups, with two-way communication between USFS staff and leadership), which culminated in a…
Publication Type: Journal Article
Trees have similar growth responses to first-entry fires and reburns following long-term fire exclusion
Year: 2024
Managing fire ignitions for resource benefit decreases fuel loads and reduces the risk of high-severity fire in fire-suppressed dry conifer forests. However, the reintroduction of low-severity wildfire can injure trees, which may decrease their growth after fire. Post-fire growth responses could change from first-entry fires to reburns, as first-entry fires reduce fuel loads and the vulnerability among trees to fire effects, which may result in trees sustaining less damage during reburns. To determine whether trees had growth responses that varied from first-entry fires to reburns, we cored…
Publication Type: Journal Article
The fastest-growing and most destructive fires in the US (2001 to 2020)
Year: 2024
The most destructive and deadly wildfires in US history were also fast. Using satellite data, we analyzed the daily growth rates of more than 60,000 fires from 2001 to 2020 across the contiguous US. Nearly half of the ecoregions experienced destructive fast fires that grew more than 1620 hectares in 1 day. These fires accounted for 78% of structures destroyed and 61% of suppression costs ($18.9 billion). From 2001 to 2020, the average peak daily growth rate for these fires more than doubled (+249% relative to 2001) in the Western US. Nearly 3 million structures were within 4 kilometers of a…
Publication Type: Journal Article
Retention of highly qualified wildland firefighters in the Western United States
Year: 2024
Federal agencies responsible for wildland fire management face increasing needs for personnel as fire seasons lengthen and fire size continues to grow, yet federal agencies have struggled to recruit and retain firefighting personnel. While many have speculated that long seasons, challenging working conditions, and low wages contribute to recruitment and retention challenges, there has been…
Publication Type: Journal Article
The Interannual Variability of Global Burned Area Is Mostly Explained by Climatic Drivers
Year: 2024
Better understanding how fires respond to climate variability is an issue of current interest in light of ongoing climate change. However, evaluating the global-scale temporal variability of fires in response to climate presents a challenge due to the intricate processes at play and the limitation of fire data. Here, we investigate the links between year-to-year variability of burned area (BA) and climate using BA data, the Fire Weather Index (FWI), and the Standardized Precipitation Evapotranspiration Index (SPEI) from 2001 to 2021 at ecoregion scales. Our results reveal complex spatial…
Publication Type: Journal Article
Drivers and Impacts of the Record-Breaking 2023 Wildfire Season in Canada
Year: 2024
The 2023 wildfire season in Canada was unprecedented in its scale and intensity, spanning from mid-April to late October and across much of the forested regions of Canada. Here, we summarize the main causes and impacts of this exceptional season. The record-breaking total area burned (~15 Mha)can be attributed to several environmental factors that converged early in the season: early snowmelt, multi annual drought conditions in western Canada, and the rapid transition to drought in eastern Canada. Anthropogenic climate change enabled sustained extreme fire weather conditions, as the meanMay–…
Publication Type: Journal Article