Research Database
Displaying 61 - 80 of 232
Face-to-face with scorching wildfire: potential toxicant exposure and the health risks of smoke for wildland firefighters at the wildland-urban interface
Year: 2023
As wildfire risks have elevated due to climate change, the health risks that toxicants from fire smoke pose to wildland firefighters have been exacerbated. Recently, the International Agency for Research on Cancer (IARC) has reclassified wildland firefighters’ occupational exposure as carcinogenic to humans (Group 1). Wildfire smoke contributes to an increased risk of cancer and cardiovascular disease, yet wildland firefighters have inadequate respiratory protection. The economic cost of wildland fires has risen concurrently, as illustrated by the appropriation of $45 billion for wildfire…
Publication Type: Journal Article
Identifying building locations in the wildland–urban interface before and after fires with convolutional neural networks
Year: 2023
Background: Wildland–urban interface (WUI) maps identify areas with wildfire risk, but they are often outdated owing to the lack of building data. Convolutional neural networks (CNNs) can extract building locations from remote sensing data, but their accuracy in WUI areas is unknown. Additionally, CNNs are computationally intensive and technically complex, making them challenging for end-users, such as those who use or create WUI maps, to apply.Aims: We identified buildings pre- and post-wildfire and estimated building destruction for three…
Publication Type: Journal Article
Fire-resistant Plants for Home Landscapes: Reduce Wildfire Risk with Proper Plant Selection and Placement
Year: 2023
In the Pacific Northwest, fires are a natural part of the changing landscape. As homeowners continue to build in the wildland-urban interface, they must take special precautions to protect their lives, homes, and property.One way to do this is to create a defensible space around your home. This is the area between your home or other structures, where potential fuel (materials or vegetation) have been modified, reduced, or cleared to create a barrier and slow the spread of wildfire toward your home. A defensible space also allows room for firefighters to fight the fire safely. Three critical…
Publication Type: Report
Future regional increases in simultaneous large Western USA wildfires
Year: 2023
Background: Wildfire simultaneity affects the availability and distribution of resources for fire management: multiple small fires require more resources to fight than one large fire does. Aims: The aim of this study was to project the effects of climate change on simultaneous large wildfires in the Western USA, regionalised by administrative divisions used for wildfire management. Methods: We modelled historical wildfire simultaneity as a function of selected fire indexes using generalised linear models trained on observed climate and fire data from 1984 to 2016. We then applied these models…
Publication Type: Journal Article
Examining the influence of mid-tropospheric conditions and surface wind changes on extremely large fires and fire growth days
Year: 2023
Background: Previous work by the author and others has examined weather associated with growth of exceptionally large fires (‘Fires of Unusual Size’, or FOUS), looking at three of four factors associated with critical fire weather patterns: antecedent drying, high wind and low humidity. However, the authors did not examine atmospheric stability, the fourth factor. Aims: This study examined the relationships of mid-tropospheric stability and dryness used in the Haines Index, and changes in surface wind speed or direction, to growth of FOUS. Methods. Weather measures were paired with daily…
Publication Type: Journal Article
The Fire Adapted Communities Pathways Tool: Facilitating Social Learning and a Science of Practice
Year: 2023
Wildfire science, policy, and practice lack systematic means for “tailoring” fire adaptation practices to socially diverse human populations and in ways that aggregate existing lessons. This article outlines the development and initial operationalization of the Fire Adapted Communities Pathways Tool, an inductive set of processes that help facilitate dialogue about needs and priorities for wildfire adaptation strategies across ownership boundaries or partners. We outline the stages and considerations organized by the tool, including how its components build from decades of social science and…
Communicating about Fire, Public Perceptions of Fire and Smoke, Social and Community Impacts of Fire
Publication Type: Journal Article
Projecting live fuel moisture content via deep learning
Year: 2023
Background: Live fuel moisture content (LFMC) is a key environmental indicator used to monitor for high wildfire risk conditions. Many statistical models have been proposed to predict LFMC from remotely sensed data; however, almost all these estimate current LFMC (nowcasting models). Accurate modelling of LFMC in advance (projection models) would provide wildfire managers with more timely information for assessing and preparing for wildfire risk. Aims: The aim of this study was to investigate the potential for deep learning models to predict LFMC across the continental United States 3 months…
Publication Type: Journal Article
Flammability study of decking sections found at the Wildland–Urban interface at different scales
Year: 2023
This work presents a study of the fire reaction of two types of decking sections (wood and thermoplastic) exposed to a radiant heat source. The flammability was studied at two scales: a cone calorimeter was used at product scale (36 cm2) and at assembly scale (around 1300 cm2), experiments were performed under a Large Scale Heat Release calorimeter with a radiant burner. Since the wood decking sections have gaps, the influence of the orientation of the sections facing the burner was further investigated. At product scale, the wood sections ignite sooner than the thermoplastic sections whereas…
Publication Type: Journal Article
Atmospheric turbulence and wildland fires: a review
Year: 2023
The behaviour of wildland fires and the dispersion of smoke from those fires can be strongly influenced by atmospheric turbulent flow. The science to support that assertion has developed and evolved over the past 100+ years, with contributions from laboratory and field observations, as well as modelling experiments. This paper provides a synthesis of the key laboratory- and field-based observational studies focused on wildland fire and atmospheric turbulence connections that have been conducted from the early 1900s through 2021. Included in the synthesis are reports of anecdotal…
Publication Type: Journal Article
Wildfire risk, salience, and housing development in the wildland–urban interface
Year: 2023
As wildfires increase in both severity and frequency, understanding the role of risk saliency on human behaviors in the face of fire risks becomes paramount. While research has shown that homebuyers capitalize wildfire risk following a fire, studies of the role that risk saliency plays on residential development is limited. This paper aims to fill this gap by studying the link between wildfire risk saliency and the rate of residential development in wildfire-prone areas, by treating recent wildfires as conditionally exogenous shocks to saliency. Using geospatial data on residential…
Publication Type: Journal Article
Identifying building locations in the wildland–urban interface before and after fires with convolutional neural networks
Year: 2023
Background: Wildland–urban interface (WUI) maps identify areas with wildfire risk, but they are often outdated owing to the lack of building data. Convolutional neural networks (CNNs) can extract building locations from remote sensing data, but their accuracy in WUI areas is unknown. Additionally, CNNs are computationally intensive and technically complex, making them challenging for end-users, such as those who use or create WUI maps, to apply. Aims: We identified buildings pre- and post-wildfire and estimated building destruction for three California wildfires: Camp, Tubbs and Woolsey.…
Publication Type: Journal Article
Exploring and Testing Wildfire Risk Decision-Making in the Face of Deep Uncertainty
Year: 2023
We integrated a mechanistic wildfire simulation system with an agent-based landscape change model to investigate the feedbacks among climate change, population growth, development, landowner decision-making, vegetative succession, and wildfire. Our goal was to develop an adaptable simulation platform for anticipating risk-mitigation tradeoffs in a fire-prone wildland–urban interface (WUI) facing conditions outside the bounds of experience. We describe how five social and ecological system (SES) submodels interact over time and space to generate highly variable alternative futures even within…
Publication Type: Journal Article
Landscape‑scale fuel treatment effectiveness: lessons learned from wildland fire case studies in forests of the western United States and Great Lakes region
Year: 2023
Background Maximizing the effectiveness of fuel treatments at landscape scales is a key research and management need given the inability to treat all areas at risk from wildfire. We synthesized information from case studies that documented the influence of fuel treatments on wildfire events. We used a systematic review to identify relevant case studies and extracted information through a series of targeted questions to summarize experiential knowledge of landscape fuel treatment effectiveness. Within a larger literature search, we identified 18 case study reports that included (1) manager…
Publication Type: Journal Article
Consistent, high-accuracy mapping of daily and sub-daily wildfire growth with satellite observations
Year: 2023
Background: Fire research and management applications, such as fire behaviour analysis and emissions modelling, require consistent, highly resolved spatiotemporal information on wildfire growth progression. Aims: We developed a new fire mapping method that uses quality-assured sub-daily active fire/thermal anomaly satellite retrievals (2003–2020 MODIS and 2012–2020 VIIRS data) to develop a high-resolution wildfire growth dataset, including growth areas, perimeters, and cross-referenced fire information from agency reports. Methods: Satellite fire detections were buffered using a historical…
Publication Type: Journal Article
Burnover events identified during the 2018 Camp Fire
Year: 2023
Background: The Camp Fire burned through communities in Butte County, California, on 8 November 2018. The fire destroyed over 18 000 structures and caused 85 fatalities, mostly within the first 12 h of the incident. Aims: A post-fire case study was conducted to learn from the devastating incident. Methods: The case study was supported by detailed first-hand accounts from 157 first responders, photos and videos, first responder radio logs, and other field data. Subsequent analysis and data integration yielded a timeline reconstruction of the first 24 h of the entire event, as well as…
Publication Type: Journal Article
Megafire: An ambiguous and emotive term best avoided by science
Year: 2023
Background
As fire regimes are changing and wildfire disasters are becoming more frequent, the term megafire is increasingly used to describe impactful wildfires, under multiple meanings, both in academia and popular media. This has resulted in a highly ambiguous concept.
Approach
We analysed the use of the term ‘megafire’ in popular media to determine its origin, its developments over time, and its meaning in the public sphere. We subsequently discuss how relative the term ‘mega’ is, and put this in the context of an analysis of Portuguese and global data on fire size distribution.…
Publication Type: Journal Article
Modeling Wildland Firefighters’ Assessments of Structure Defensibility
Year: 2023
In wildland–urban interface areas, firefighters balance wildfire suppression and structure protection. These tasks are often performed under resource limitations, especially when many structures are at risk. To address this problem, wildland firefighters employ a process called “structure triage” to prioritize structure protection based on perceived defensibility. Using a dataset containing triage assessments of thousands of structures within the Western US, we developed a machine learning model that can improve the understanding of factors contributing to assessed structure defensibility.…
Publication Type: Journal Article
Factors influencing ember accumulation near a building
Year: 2023
Background: Embers, also known as firebrands, are the leading cause of building ignition during wildland–urban fires. This is attributed both to direct ignition of material on, in, or attached to the building, and indirect ignition where they ignite vegetation or other combustible material near the building, which results in a radiant heat and/or direct flame contact exposure that ignites the building. Indirect ignition of a building can occur when embers accumulate on and ignite nearby combustible fuel, resulting in radiant heat or flame constant exposure. Aims/implications: Factors that…
Publication Type: Journal Article
Connecting dryland fine-fuel assessments to wildfire exposure and natural resource values at risk
Year: 2023
Background Wildland fire in arid and semi-arid (dryland) regions can intensify when climatic, biophysical, and land-use factors increase fuel load and continuity. To inform wildland fire management under these conditions, we developed high-resolution (10-m) estimates of fine fuel across the Altar Valley in southern Arizona, USA, which spans dryland, grass-dominated ecosystems that are administered by multiple land managers and owners. We coupled field measurements at the end of the 2021 growing season with Sentinel-2 satellite imagery and vegetation indices acquired during and after the…
Publication Type: Journal Article
Wildland–Urban Interface: Definition and Physical Fire Risk Mitigation Measures, a Systematic Review
Year: 2023
Due to the associated fire risk, the wildland–urban interface (WUI) has drawn the attention of researchers and managers from a range of backgrounds. From a land management point of view, it is important to identify the WUI to determine areas to prioritise for fire risk prevention. It is also important to know the fire risk mitigation measures available to select the most appropriate for each specific context. In this systematic review, definitions of the WUI were investigated and physical mitigation measures for reducing the risk of fire were examined from a land management perspective. The…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 2
- 3
- 4
- 5
- 6
- …
- Next page
- Last page