Research Database
Displaying 201 - 220 of 240
Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States
Year: 2014
Seasonal changes in the climatic potential for very large wildfires (VLWF ≥ 50,000 ac ~ 20,234 ha) across the western contiguous United States are projected over the 21st century using generalized linear models and downscaled climate projections for two representative concentration pathways (RCPs). Significant (p ≤ 0.05) increases in VLWF probability for climate of the mid-21st century (2031–2060) relative to contemporary climate are found, for both RCP 4.5 and 8.5. The largest differences are in the Eastern Great Basin, Northern Rockies, Pacific Northwest, Rocky Mountains, and Southwest.…
Publication Type: Journal Article
Wildland Urban Interface Wildfire Mitigation Desk Reference Guide
Year: 2014
The effects of wildland fire on communities have become more intense, frequent, and far-reaching. Increased development in the wildland urban interface means higher wildfire risk and more suppression needs, costing billions every year. A comprehensive approach to preparedness and mitigation is an effective way to address increasing suppression costs and reduce risk to communities. The Wildland Urban Interface Wildfire Mitigation Desk Reference Guide is designed to provide basic background information on relevant programs and terminology for those, whether community members or agency personnel…
Publication Type: Government Report
Assessing the quality of forest fuel loading data collected using public participation methods and smartphones
Year: 2014
Effective wildfire management in the wildland–urban interface (WUI) depends on timely data on forest fuel loading to inform management decisions. Mobile personal communication devices, such as smartphones, present new opportunities to collect data in the WUI, using sensors within the device – such as the camera, global positioning system (GPS), accelerometer, compass, data storage and networked data transfer. In addition to providing a tool for forest professionals, smartphones can also facilitate engaging other members of the community in forest management as they are now available to a…
Publication Type: Journal Article
Climate and very large wildland fires in the contiguous western USA
Year: 2014
Very large wildfires can cause significant economic and environmental damage, including destruction of homes, adverse air quality, firefighting costs and even loss of life. We examine how climate is associated with very large wildland fires (VLWFs ≥50 000 acres, or ~20 234 ha) in the western contiguous USA. We used composite records of climate and fire to investigate the spatial and temporal variability of VLWF–climatic relationships. Results showed quantifiable fire weather leading up and up to 3 weeks post VLWF discovery, thus providing predictors of the probability that VLWF occurrence in…
Publication Type: Journal Article
How risk management can prevent future wildfire disasters in the wildland-urban interface
Year: 2014
Recent fire seasons in the western United States are some of the most damaging and costly on record. Wildfires in the wildland-urban interface on the Colorado Front Range, resulting in thousands of homes burned and civilian fatalities, although devastating, are not without historical reference. These fires are consistent with the characteristics of large, damaging, interface fires that threaten communities across much of the western United States. Wildfires are inevitable, but the destruction of homes, ecosystems, and lives is not. We propose the principles of risk analysis to provide land…
Publication Type: Report
Playing with Fire: How climate change and development patterns are constributing to the soaring costs of western wildfires
Year: 2014
Strong scientific evidence shows that climate change is producing hotter, drier conditions that contribute to larger fires and longer fire seasons in the American West today. The annual number of large wildfires on federally managed lands in the 11 western states has increased by more than 75 percent: from approximately 140 during the period 1980–1989 to 250 in the 2000–2009 period. The western wildfire season has grown from five months on average in the 1970s to seven months today. Moreover, the threat of wildfires is projected to worsen over time as rising temperatures—rising more rapidly…
Publication Type: Report
Defining extreme wildland fires using geospatial and ancillary metrics
Year: 2014
There is a growing professional and public perception that ‘extreme’ wildland fires are becoming more common due to changing climatic conditions. This concern is heightened in the wildland–urban interface where social and ecological effects converge. ‘Mega-fires’, ‘conflagrations’, ‘extreme’ and ‘catastrophic’ are descriptors interchangeably used increasingly to describe fires in recent decades in the US and globally. It is necessary to have consistent, meaningful and quantitative metrics to define these perceived ‘extreme’ fires, given studies predict an increased frequency of large and…
Publication Type: Journal Article
Wildland fire emissions, carbon, and climate: Modeling fuel consumption
Year: 2014
Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic process that leads to heat absorbing emissions called greenhouse gas and other aerosol emissions that can impact atmospheric and ecosystem processes, carbon stocks, and land surface reflectance. It is a critical requirement for…
Publication Type: Journal Article
Modeling Regional-Scale Wildland Fire Emissions with the Wildland Fire Emissions Information System
Year: 2014
As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire.The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent approach to estimating emissions at landscape, regional, and continental scales. The system taps into data and tools developed by the U.S. Forest Serviceto describe fuels, fuel loadings, and fuel consumption and merges information…
Publication Type: Journal Article
Wildland firefighter safety zones: a review of past science and summary of future needs
Year: 2014
Current wildland firefighter safety zone guidelines are based on studies that assume flat terrain, radiant heating, finite flame width, constant flame temperature and high flame emissivity. Firefighter entrapments and injuries occur across a broad range of vegetation, terrain and atmospheric conditions generally when they are within two flame heights of the fire. Injury is not confined to radiant heating or flat terrain; consequently, convective heating should be considered as a potential heating mode. Current understanding of energy transport in wildland fires is briefly summarised, followed…
Publication Type: Journal Article
The role of defensible space for residential structure protection during wildfires
Year: 2014
With the potential for worsening fire conditions, discussion is escalating over how to best reduce effects on urban communities. A widely supported strategy is the creation of defensible space immediately surrounding homes and other structures. Although state and local governments publish specific guidelines and requirements, there is little empirical evidence to suggest how much vegetation modification is needed to provide significant benefits. We analysed the role of defensible space by mapping and measuring a suite of variables on modern pre-fire aerial photography for 1000 destroyed and…
Publication Type: Journal Article
Understanding evacuation preferences and wildfire mitigations among Northwest Montana residents
Year: 2014
There is currently insufficient information in the United States about residents’ planned evacuation actions during wildfire events, including any intent to remain at or near home during fire events. This is incompatible with growing evidence that select populations at risk from wildfire are considering alternatives to evacuation. This study explores the evacuation preferences of wildland–urban interface residents in Flathead County, Montana, USA. We compare the performance of wildfire mitigation and fuel reduction actions across groups of residents with different primary evacuation…
Publication Type: Journal Article
Relationships between climate and macroscale area burned in the western United States
Year: 2013
Increased wildfire activity (e.g. number of starts, area burned, fire behaviour) across the western United States in recent decades has heightened interest in resolving climate–fire relationships. Macroscale climate–fire relationships were examined in forested and non-forested lands for eight Geographic Area Coordination Centers in the western United States, using area burned derived from the Monitoring Trends in Burn Severity dataset (1984–2010). Fire-specific biophysical variables including fire danger and water balance metrics were considered in addition to standard climate variables of…
Publication Type: Journal Article
Allowing a wildfire to burn: estimating the effect on future suppression costs
Year: 2013
Where a legacy of aggressive wildland fire suppression has left forests in need of fuel reduction, allowing wildland fire to burn may provide fuel treatment benefits, thereby reducing suppression costs from subsequent fires. The least-cost-plus-net-value-change model of wildland fire economics includes benefits of wildfire in a framework for evaluating suppression options. In this study, we estimated one component of that benefit – the expected present value of the reduction in suppression costs for subsequent fires arising from the fuel treatment effect of a current fire. To that end, we…
Publication Type: Journal Article
Social Science at the WUI: A Compendium of Research Results to Create Fire-Adapted Communities
Year: 2013
Over the past decade, a growing body of research has been conducted on the human dimensions of wildland fire. Building on a relatively small number of foundational studies, this research now addresses a wide range of topics including mitigation activities on private lands, fuels reduction treatments on public land, community impacts and resident behaviors during fire, acceptance of approaches to postfire restoration and recovery, and fire management policy and decision making. As this research has matured, there has been a recognition of the need to examine the full body of resulting…
Publication Type: Report
Wildland Fire management: Are actively managed forests more resilient than passively managed forests?
Year: 2013
Large areas of federal lands in the western states are currently at high risk of severe wildfire and have many insect and disease problems, indicating a significant decline in forest health and resilience. Although research studies have not been done that would measure whether actively managed forests are more resilient to wildfires than passively managed forests, results from studies of hazardous fuels treatment effectiveness and the economic benefits from avoided costs of future wildfire suppression due to fuels treatment can be used to support an affirmative reply to the question. If a…
Publication Type: Report
Modelling conditional burn probability patterns for large wildland fires
Year: 2013
We present a technique for modelling conditional burn probability patterns in two dimensions for large wildland fires. The intended use for the model is strategic program planning when information about future fire weather and event durations is unavailable and estimates of the average probabilistic shape and extent of large fires on a landscape are needed. To model average conditional burn probability patterns, we organised historical fire data from Yellowstone National Park, USA, into a set of grids; one grid per fire. We captured various spatial relationships inherent in the gridded data…
Publication Type: Journal Article
Lessons Learned from Waldo Canyon: FAC mitigation assessment team report
Year: 2013
The Waldo Canyon fire presented the first opportunity for partners in the national Fire Adapted Communities (FAC) Coalition to collectively assess the performance of mitigation practices in Colorado Springs in a post-fire environment and to compare the results to the mitigation strategy recommended by the Fire Adapted Communities program. The assessment was conducted from July 18-20, 2012, by a FAC Wildfire Mitigation Assessment Team, which included two sets of researchers: structural assessment and forestry experts and social science and public education experts, accompanied by staff from…
Publication Type: Report
Overcoming barriers to firewise actions by residents
Year: 2013
Encouraging the public to take action (e.g., creating defensible space) that can reduce the likelihood of wildfire damage and decrease the likelihood of injury is a common approach to increasing wildfire safety and damage mitigation. This study was designed to improve our understanding of both individual and community actions that homeowners currently do or might take to protect their home or property, and the barriers that impede homeowners from completing firewise treatments to their home or property.
Publication Type: Report
Wildland firefighter entrapment avoidance: modelling evacuation triggers
Year: 2013
Wildland firefighters are often called on to make tactical decisions under stressful conditions in order to suppress a fire. These decisions can be hindered by human factors such as insufficient knowledge of surroundings and conditions, lack of experience, overextension of resources or loss of situational awareness. One potential tool for assisting fire managers in situations where human factors can hinder decision-making is the Wildland–Urban Interface Evacuation (WUIVAC) model, which models fire minimum travel times to create geographic trigger buffers for evacuation recommendations.…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 8
- 9
- 10
- 11
- 12
- Next page
- Last page