Research Database
Displaying 181 - 200 of 298
Spatially explicit measurements of forest structure and fire behavior following restoration treatments in dry forests
Year: 2017
Restoration treatments in dry forests of the western US often attempt silvicultural practices to restore the historical characteristics of forest structure and fire behavior. However, it is suggested that a reliance on non-spatial metrics of forest stand structure, along with the use of wildland fire behavior models that lack the ability to handle complex structures, may lead to uncharacteristically homogeneous rather than heterogeneous forest structures following restoration. In our study, we used spatially explicit forest inventory data and a physics based fire behavior model to investigate…
Publication Type: Journal Article
An empirical machine learning method for predicting potential fire control locations for pre-fire planning and operational fire management
Year: 2017
During active fire incidents, decisions regarding where and how to safely and effectively deploy resources to meet management objectives are often made under rapidly evolving conditions, with limited time to assess management strategies or for development of backup plans if initial efforts prove unsuccessful. Under all but the most extreme fire weather conditions, topography and fuels are significant factors affecting potential fire spread and burn severity. We leverage these relationships to quantify the effects of topography, fuel characteristics, road networks and fire suppression effort…
Publication Type: Journal Article
Effects of accelerated wildfire on future fire regimes and implications for the United States federal fire policy
Year: 2017
Wildland fire suppression practices in the western United States are being widely scrutinized by policymakers and scientists as costs escalate and large fires increasingly affect social and ecological values. One potential solution is to change current fire suppression tactics to intentionally increase the area burned under conditions when risks are acceptable to managers and fires can be used to achieve long-term restoration goals in fire adapted forests. We conducted experiments with the Envision landscape model to simulate increased levels of wildfire over a 50-year period on a 1.2 million…
Publication Type: Journal Article
The normal fire environment—Modeling environmental suitability for large forest wildfires using past, present, and future climate normals
Year: 2017
We modeled the normal fire environment for occurrence of large forest wildfires (>40 ha) for the Pacific Northwest Region of the United States. Large forest wildfire occurrence data from the recent climate normal period (1971–2000) was used as the response variable and fire season precipitation, maximum temperature, slope, and elevation were used as predictor variables. A projection of our model onto the 2001–2030 climate normal period showed strong agreement between model predictions and the area of forest burned by large wildfires from 2001 to 2015 (independent fire data). We then used…
Publication Type: Journal Article
Sustainability and wildland fire: The origins of Forest Service Wildland Fire Research
Year: 2017
On June 1, 2015, the Forest Service, an agency of the U.S. Department of Agriculture (USDA), celebrated the 100th anniversary of the Branch of Research. Established in 1915 to centralize and elevate the pursuit of research throughout the agency, the Branch of Research focused on everything from silvicultural investigations conducted by the experiment stations to industrial studies and wood product improvement at the Madison, WI, Forest Products Laboratory. From its beginning, the branch oversaw ongoing research designed to develop insights, methods, and technologies to help foresters and land…
Publication Type: Report
Climate change and the eco-hydrology of fire: will area burned increase in a warming western USA?
Year: 2017
Wildfire area is predicted to increase with global warming. Empirical statistical models and process-based simulations agree almost universally. The key relationship for this unanimity, observed at multiple spatial and temporal scales, is between drought and fire. Predictive models often focus on ecosystems in which this relationship appears to be particularly strong, such as mesic and arid forests and shrublands with substantial biomass such as chaparral. We examine the drought-fire relationship, specifically the correlations between water-balance deficit and annual area burned, across the…
Publication Type: Journal Article
Tamm Review: Shifting global fire regimes: Lessons from reburns and research needs
Year: 2017
Across the globe, rising temperatures and altered precipitation patterns have caused persistent regional droughts, lengthened fire seasons, and increased the number of weather-driven extreme fire events. Because wildfires currently impact an increasing proportion of the total area burned, land managers need to better understand reburns – in which previously burned areas can modify the patterns and severity of subsequent fires. For example, knowing how long past fire boundaries can function as barriers to fire spread may empower decision-makers to manage some wildfires as large-scale fuel…
Publication Type: Journal Article
Returning Fire to the Land—Celebrating Traditional Knowledge and Fire
Year: 2017
North American tribes have traditional knowledge about fire effects on ecosystems, habitats, and resources. For millennia, tribes have used fire to promote valued resources. Sharing our collective understanding of fire, derived from traditional and western knowledge systems, can benefit landscapes and people. We organized two workshops to investigate how traditional and western knowledge can be used to enhance wildland fire and fuels management and research. We engaged tribal members, managers, and researchers to formulate solutions regarding the main topics identified as important to tribal…
Publication Type: Journal Article
A Century of Wildland Fire Research - Contributions to Long-term Approaches for Wildland Fire Management: Proceedings of a Workshop
Year: 2017
Although ecosystems, humans, and fire have coexisted for millennia, changes in geology, ecology, hydrology, and climate as well as sociocultural, regulatory, and economic factors have converged to make wildland fire management exceptionally challenging for U.S. federal, state, and local authorities. Given the mounting, unsustainable costs and difficulty translating existing wildland fire science into policy, the National Academies of Sciences, Engineering, and Medicine organized a 1-day workshop to focus on how a century of wildland fire research can contribute to improving wildland fire…
Publication Type: Report
Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds
Year: 2017
The area burned annually by wildfires is expected to increase worldwide due to climate change. Burned areas increase soil erosion rates within watersheds, which can increase sedimentation in downstream rivers and reservoirs. However, which watersheds will be impacted by future wildfires is largely unknown. Using an ensemble of climate, fire, and erosion models, we show that postfire sedimentation is projected to increase for nearly nine tenths of watersheds by >10% and for more than one third of watersheds by >100% by the 2041 to 2050 decade in the western USA. The projected increases…
Publication Type: Journal Article
A LiDAR-based analysis of the effects of slope, vegetation density, and ground surface roughness on travel rates for wildland firefighter escape route mapping
Year: 2017
Escape routes are essential components of wildland firefighter safety, providing pre-defined pathways to a safety zone. Among the many factors that affect travel rates along an escape route, landscape conditions such as slope, low-lying vegetation density, and ground surface roughness are particularly influential, and can be measured using airborne light detection and ranging (LiDAR) data. In order to develop a robust, quantitative understanding of the effects of these landscape conditions on travel rates, we performed an experiment wherein study participants were timed while walking along a…
Publication Type: Journal Article
NFPA’s Wildland/Urban Interface: Fire Department Wildfire Preparedness and Readiness Capabilities – Final Report
Year: 2017
The increasing frequency and intensity of wildland and wildland-urban interface (WUI) fires have become a significant concern in many parts of the United States and around the world. To address and manage this WUI fire risk, local fire departments around the country have begun to acquire the appropriate equipment and offer more training in wildfire response and suppression. There is also growing recognition of the importance of wildfire mitigation and public outreach about community risk reduction. Using survey and interview data from 46 senior officers from local fire departments around the…
decision making, management, wildland fire, Wildland-urban interface (WUI), fire suppression, adaptation
Publication Type: Report
Spatiotemporal dynamics of simulated wildfire, forest management, and forest succession in central Oregon, USA.
Year: 2017
We use the simulation model Envision to analyze long-term wildfire dynamics and the effects of different fuel management scenarios in central Oregon, USA. We simulated a 50-year future where fuel management activities were increased by doubling and tripling the current area treated while retaining existing treatment strategies in terms of spatial distribution and treatment type. We modeled forest succession using a state-and-transition approach and simulated wildfires based on the contemporary fire regime of the region. We tested for the presence of temporal trends and overall differences in…
Publication Type: Journal Article
Mortality predictions of fire-injured large Douglas-fir and ponderosa pine in Oregon and Washington, USA
Year: 2017
Wild and prescribed fire-induced injury to forest trees can produce immediate or delayed tree mortality but fire-injured trees can also survive. Land managers use logistic regression models that incorporate tree-injury variables to discriminate between fatally injured trees and those that will survive. We used data from 4024 ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and 3804 Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees from 23 fires across Oregon and Washington to assess the discriminatory ability of 21 existing logistic regression models and a polychotomous key (Scott…
Publication Type: Journal Article
Studying interregional wildland fire engine assignments for large fire suppression
Year: 2017
One crucial component of large fire response in the United States (US) is the sharing of wildland firefighting resources between regions: resources from regions experiencing low fire activity supplement resources in regions experiencing high fire activity. An important step towards improving the efficiency of resource sharing and related policies is to develop a better understanding of current assignment patterns. In this paper we examine the set of interregional wildland fire engine assignments for incidents in California and the Southwest Geographic Coordination Areas, utilising data from…
Publication Type: Journal Article
Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA.
Year: 2017
Fire-prone landscapes present many challenges for both managers and policy makers in developing adaptive behaviors and institutions. We used a coupled human and natural systems framework and an agent-based landscape model to examine how alternative management scenarios affect fire and ecosystem services metrics in a fire-prone multiownership landscape in the eastern Cascades of Oregon. Our model incorporated existing models of vegetation succession and fire spread and information from original empirical studies of landowner decision making. Our findings indicate that alternative management…
Publication Type: Journal Article
Climate-driven changes in forest succession and the influence of management on forest carbon dynamics in the Puget Lowlands of Washington State, USA
Year: 2016
Projecting the response of forests to changing climate requires understanding how biotic and abiotic controls on tree growth will change over time. As temperature and interannual precipitation variability increase, the overall forest response is likely to be influenced by species-specific responses to changing climate. Management actions that alter composition and density may help buffer forests against the effects of changing climate, but may require tradeoffs in ecosystem services. We sought to quantify how projected changes in climate and different management regimes would alter the…
Publication Type: Journal Article
Risk management: Core principles and practices, and their relevance to wildland fire
Year: 2016
The Forest Service, U.S. Department of Agriculture faces a future of increasing complexity and risk, pressing financial issues, and the inescapable possibility of loss of human life. These issues are perhaps most acute for wildland fire management, the highest risk activity in which the Forest Service engages. Risk management (RM) has long been put forth as an appropriate approach for addressing fire, and agency-wide adoption of RM principles and practices will be critical to bring about necessary change and improve future decisions. To facilitate more comprehensive adoption of formal RM…
Publication Type: Report
Impact of anthropogenic climate change on wildfire across western US forests
Year: 2016
Increased forest fire activity across the western continental United States (US) in recent decades has likely been enabled by a number of factors, including the legacy of fire suppression and human settlement, natural climate variability, and human-caused climate change. We use modeled climate projections to estimate the contribution of anthropogenic climate change to observed increases in eight fuel aridity metrics and forest fire area across the western United States. Anthropogenic increases in temperature and vapor pressure deficit significantly enhanced fuel aridity across western US…
Publication Type: Journal Article
Weather, fuels, and topography impede wildland fire spread in western US landscapes
Year: 2016
As wildland fire activity continues to surge across the western US, it is increasingly important that we understand and quantify the environmental drivers of fire and how they vary across ecosystems. At daily to annual timescales, weather, fuels, and topography are known to influence characteristics such as area burned and fire severity. An understudied facet, however, concerns how these factors inhibit fire spread and thereby contribute to the formation of fire boundaries. We evaluated how weather, fuels, and topography impeded fire spread in four large study areas in the western US, three…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 8
- 9
- 10
- 11
- 12
- …
- Next page
- Last page