Research Database
Displaying 61 - 80 of 103
Put the wet stuff on the hot stuff': The legacy and drivers of conflict surrounding wildfire suppression
Year: 2015
Existing research demonstrates that wildfire events can lead to conflict among local residents and outside professionals involved in wildfire management or suppression. What has been missing in thewildfire literature is a more explicit understanding of the social dynamics that influence such conflict in rural or agricultural communities and their long-term legacy for future wildfire management. Authorsconducted interviews with local residents of a southeastern Washington community in 2012 to better understand conflict surrounding management of the 2006 Columbia Complex Fire. We utilize…
Publication Type: Journal Article
Wildland firefighter safety zones: a review of past science and summary of future needs
Year: 2014
Current wildland firefighter safety zone guidelines are based on studies that assume flat terrain, radiant heating, finite flame width, constant flame temperature and high flame emissivity. Firefighter entrapments and injuries occur across a broad range of vegetation, terrain and atmospheric conditions generally when they are within two flame heights of the fire. Injury is not confined to radiant heating or flat terrain; consequently, convective heating should be considered as a potential heating mode. Current understanding of energy transport in wildland fires is briefly summarised, followed…
Publication Type: Journal Article
Wildland fire emissions, carbon, and climate: Modeling fuel consumption
Year: 2014
Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic process that leads to heat absorbing emissions called greenhouse gas and other aerosol emissions that can impact atmospheric and ecosystem processes, carbon stocks, and land surface reflectance. It is a critical requirement for…
Publication Type: Journal Article
Beyond reducing fire hazard: fuel treatment impacts on overstory tree survival
Year: 2014
Fuel treatment implementation in dry forest types throughout the western United States is likely to increase in pace and scale in response to increasing incidence of large wildfires. While it is clear that properly implemented fuel treatments are effective at reducing hazardous fire potential, there are ancillary ecological effects that can impact forest resilience either positively or negatively depending on the specific elements examined, as well as treatment type, timing, and intensity. In this study, we use overstory tree growth responses, measured seven years after the most common fuel…
Publication Type: Journal Article
Effectiveness of fuel treatments for mitigating wildfire risk and sequestering forest carbon: A case study in the Lake Tahoe Basin
Year: 2014
Fuel-reduction treatments are used extensively to reduce wildfire risk and restore forest diversity and function. In the near future, increasing regulation of carbon (C) emissions may force forest managers to balance the use of fuel treatments for reducing wildfire risk against an alternative goal of C sequestration. The objective of this study was to evaluate how long-term fuel treatments mitigate wildfires and affect forest C. For the Lake Tahoe Basin in the central Sierra Nevada, USA, fuel treatment efficiency was explored with a landscape-scale simulation model, LANDIS-II, using five fuel…
Publication Type: Journal Article
Mapping the daily progression of large wildland fires using MODIS active fire data
Year: 2014
High temporal resolution information on burnt area is needed to improve fire behaviour and emissions models. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly and active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the timing of burnt area for 16 large wildland fires. For each fire, parameters for the kriging model were defined using variogram analysis. The optimal number of observations used to estimate a pixel’s time of burning varied between four and six among the fires studied. The median standard error from…
Publication Type: Journal Article
Fire behavior in masticated fuels: A review
Year: 2014
Mastication is an increasingly common fuels treatment that redistributes “ladder” fuels to the forest floor to reduce vertical fuel continuity, crown fire potential, and fireline intensity, but fuel models do not exist for predicting fire behavior in these fuel types. Recent fires burning in masticated fuels have behaved in unexpected and contradictory ways, likely because the shredded, compact fuel created when trees and shrubs are masticated contains irregularly shaped pieces in mixtures quite different from other woody fuels. We review fuels characteristics and fire behavior in masticated…
Publication Type: Journal Article
Source of Sediment Hazards on Steep Slopes
Year: 2014
On steep slopes between 30-45 degrees, loose soil is stored behind plant “dams.” After a fire, > 75% of stored sediment is rapidly released to the channel system by dry ravel (the rolling, bouncing, and sliding of individual particles). The postfire hazard from stored sediment can be calculated at the catchment scale if the size and distribution of vegetation cover are known.
Publication Type: Report
Examining fire-prone forest landscapes as coupled human and natural systems
Year: 2014
Fire-prone landscapes are not well studied as coupled human and natural systems (CHANS) and present many challenges for understanding and promoting adaptive behaviors and institutions. Here, we explore how heterogeneity, feedbacks, and external drivers in this type of natural hazard system can lead to complexity and can limit the development of more adaptive approaches to policy and management. Institutions and social networks can counter these limitations and promote adaptation. We also develop a conceptual model that includes a robust characterization of social subsystems for a fire-prone…
Publication Type: Journal Article
Mapping multiple forest threats in the northwestern United States
Year: 2013
US forestlands are increasingly subject to disturbances including wildfire, insects and disease, and urban and exurban development. Devising strategies for addressing these “forest threats“ depends on anticipating where individual disturbances are most likely and where they might occur in combination. However, many spatial data sets describing forest threats are produced at fine scales but are intended only for coarse-scale planning and policy purposes. We demonstrate one way to combine and display forest threat data at their appropriate spatial scales, using spatial data characterizing…
Publication Type: Journal Article
The merits of prescribed fire outweigh potential carbon emission effects
Year: 2013
A White Paper developed by Association for Fire Ecology, International Association of Wildland Fire, Tall Timbers Research Station, and The Nature Conservancy.While North American ecosystems vary widely in their ecology and natural historical fire regimes, they are unified in benefitting from prescribed fire when judiciously applied with the goal of maintaining and restoring native ecosystem composition, structure, and function. On a modern landscape in which historical fire regimes cannot naturally occur due to fuel load build-up and resulting public safety concerns, the cornerstone…
Publication Type: Report
Living in a tinderbox: wildfire risk perceptions and mitigating behaviors
Year: 2013
The loss of homes to wildfires is an important issue in the USA and other countries. Yet many homeowners living in fire-prone areas do not undertake mitigating actions, such as clearing vegetation, to decrease the risk of losing their home. To better understand the complexity of wildfire risk-mitigation decisions and the role of perceived risk, we conducted a survey of homeowners in a fire-prone area of the front range of the Rocky Mountains in Colorado. We examine the relationship between perceived wildfire risk ratings and risk-mitigating behaviours in two ways. First, we model wildfire…
Publication Type: Journal Article
The relationship of post-fire white ash cover to surface fuel consumption
Year: 2013
White ash results from the complete combustion of surface fuels, making it a logically simple retrospective indicator of surface fuel consumption. However, the strength of this relationship has been neither tested nor adequately demonstrated with field measurements. We measured surface fuel loads and cover fractions of white ash and four other surface materials (green vegetation, brown non-photosynthetic vegetation, black char and mineral soil) immediately before and after eight prescribed fires in four disparate fuelbed types: boreal forest floor, mixed conifer woody slash, mixed conifer…
Publication Type: Journal Article
ArcFuels10 System Overview
Year: 2013
Fire behavior modeling and geospatial analyses can provide tremendous insight for land managers as they grapple with the complex problems frequently encountered in wildfire risk assessments and fire and fuels management planning. Fuel management often is a particularly complicated process in which the benefits and potential impacts of fuel treatments need to be demonstrated in the context of land management goals and public expectations. The fuel treatment planning process is complicated by the lack of data assimilation among fire behavior models and weak linkages to geographic information…
Publication Type: Report
Do carbon offsets work? The role of forest management in greenhouse gas mitigation
Year: 2013
As forest carbon offset projects become more popular, professional foresters are providing their expertise to support them. But when several members of the Society of American Foresters questioned the science and assumptions used to design the projects, the organization decided to convene a task force to examine whether these projects can provide the intended climate benefits. The report details reasons to look for other solutions to greenhouse gas emission challenges. After synthesizing the latest available science, the authors challenge the underlying assumptions used to establish most…
Publication Type: Report
Fluvial Response to Abrupt Global Warming at the Palaeocene/Eocene Boundary
Year: 2012
Climate strongly affects the production of sediment from mountain catchments as well as its transport and deposition within adjacent sedimentary basins. However, identifying climatic influences on basin stratigraphy is complicated by nonlinearities, feedback loops, lag times, buffering and convergence among processes within the sediment routeing system. The Palaeocene/Eocene thermal maximum (PETM) arguably represents the most abrupt and dramatic instance of global warming in the Cenozoic era and has been proposed to be a geologic analogue for anthropogenic climate change. Here we evaluate the…
Publication Type: Journal Article
Feedback from Plant Species Change Amplifies CO 2 Enhancement of Grassland Productivity
Year: 2012
Dynamic global vegetation models simulate feedbacks of vegetation change on ecosystem processes, but direct, experimental evidence for feedbacks that result from atmospheric CO 2 enrichment is rare. We hypothesized that feedbacks from species change would amplify the initial CO 2 stimulation of aboveground net primary productivity (ANPP) of tallgrass prairie communities. Communities of perennial forb and C 4 grass species were grown for 5 years along a field CO 2 gradient (250-500 microL/L) in central Texas USA on each of three soil types, including upland and lowland clay soils and a sandy…
Publication Type: Journal Article
Estimating Consumption and Remaining Carbon in Burned Slash Piles
Year: 2012
Fuel reduction treatments to reduce fire risk have become commonplace in the fire adapted forests of western North America. These treatments generate significant woody debris, or slash, and burning this material in piles is a common and inexpensive approach to reducing fuel loads. Although slash pile burning is a common practice, there is little information on consumption or even a common methodology for estimating consumption. As considerations of carbon storage and emissions from forests increase, better means of quantifying burn piles are necessary. This study uses two methods, sector…
Publication Type: Journal Article
Forest Protection and Forest Harvest as Strategies for Ecological Sustainability and Climate Change Mitigation
Year: 2012
An important consideration in forest management to mitigate climate change is the balance between forest carbon (C) storage and ecological sustainability. We explore the effects of management strategies on tradeoffs between forest C stocks and ecological sustainability under five scenarios, three of which included management and two scenarios which provide baselines emulating the natural forest. Managed forest scenarios were: (a) Protection (PROT), i.e., management by suppression of natural disturbance and harvest exclusion; (b) Harvest at a higher rate removing all sustainably available wood…
Publication Type: Journal Article
Carbon Outcomes from Fuels Treatment and Bioenergy Production in a Sierra Nevada Forest
Year: 2012
In temperate conifer forests of the Western USA, there is active debate whether fuels reduction treatments and bioenergy production result in decreased carbon emissions and increased carbon sequestration compared to a no-action alternative. To address this debate over net carbon stocks, we performed a carbon life-cycle analysis on data from a fuels reduction treatment in a temperate, dry conifer forest in the northern Sierra Nevada of California, USA. The analysis tracks the net ecosystem carbon balance over 50 years for two scenarios (1) fuels reduction treatment combined with bioenergy…
Publication Type: Journal Article