Research Database
Displaying 21 - 40 of 66
A laboratory-scale simulation framework for analysing wildfire hydrologic and water quality effects
Year: 2024
Background: Wildfires can significantly impact water quality and supply. However logistical difficulties and high variability in in situ data collection have limited previous analyses.Aims: We simulated wildfire and rainfall effects at varying terrain slopes in a controlled setting to isolate driver-response relationships.Methods: Custom-designed laboratory-scale burn and rainfall simulators were applied to 154 soil samples, measuring subsequent runoff and constituent responses. Simulated conditions included low, moderate, and high burn intensities (~100–600°C); 10…
Publication Type: Journal Article
Drought before fire increases tree mortality after fire
Year: 2024
Fire and drought are expected to increase in frequency and severity in temperate forests due to climate change. To evaluate whether drought increases the likelihood of post-fire tree mortality, we used a large database of tree survival and mortality from 32 years of wildland fires covering four dominant western North American conifers. We used Bayesian hierarchical modeling to predict the probability of individual tree mortality after fire based on species—Pinus contorta (lodgepole pine), Abies concolor (white fir), Pseudotsuga menziesii (Douglas-fir), and Pinus…
Publication Type: Journal Article
Before the fire: predicting burn severity and potential post-fire debris-flow hazards to conservation populations of the Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus)
Year: 2024
Background: Colorado River Cutthroat Trout (CRCT; Oncorhynchus clarkii pleuriticus) conservation populations may be at risk from wildfire and post-fire debris flows hazards. Aim: To predict burn severity and potential post-fire debris flow hazard classifications to CRCT conservation populations before wildfires occur. Methods: We used remote sensing, spatial analyses, and machine learning to model 28 wildfire incidents (2016–2020) and spatially predict burn severity from pre-wildfire environmental factors to evaluate the likelihood…
Publication Type: Journal Article
Characterizing post-fire delayed tree mortality with remote sensing: sizing up the elephant in the room
Year: 2024
BackgroundDespite recent advances in understanding the drivers of tree-level delayed mortality, we lack a method for mapping delayed mortality at landscape and regional scales. Consequently, the extent, magnitude, and effects of delayed mortality on post-fire landscape patterns of burn severity are unknown. We introduce a remote sensing approach for mapping delayed mortality based on post-fire decline in the normalized burn ratio (NBR). NBR decline is defined as the change in NBR between the first post-fire measurement and the minimum NBR value up to 5 years post-fire for each pixel…
Publication Type: Journal Article
Proportion of forest area burned at high-severity increases with increasing forest cover and connectivity in western US watersheds
Year: 2023
Context In western US forests, the increasing frequency of large high-severity fires presents challenges for society. Quantifying how fuel conditions influence high-severity area is important for managing risks of large high-severity fires and understanding how they are changing with climate change. Fuel availability and heterogeneity influence high-severity fire probability, but heterogeneity is insensitive to some aspects of forest connectivity that are important to potential high-severity fire transmission and thus high-severity area. Objectives To quantify the effects of fuel availability…
Publication Type: Journal Article
Building water resilience in the face of cascading wildfire risks
Year: 2023
Severe wildfire is altering the natural and the built environment and posing risks to environmental and societal health and well-being, including cascading impacts to water systems and built water infrastructure. Research on wildfire-resilient water systems is growing but not keeping pace with the scale and severity of wildfire impacts, despite their intensifying threat. In this study, we evaluate the state of knowledge regarding wildfire-related hazards to water systems. We propose a holistic framework to assess interactions and feedback loops between water quality, quantity, and…
Publication Type: Journal Article
Recent Douglas-fir Mortality in the Klamath Mountains Ecoregion of Oregon: Evidence for a Decline Spiral
Year: 2023
Recent increases in Douglas-fir (Psuedotsuga menziesii var. menziesii) mortality in the Klamath Mountains ecoregion raise concerns about the long-term resilience of Douglas-fir in the ecoregion and increased potential for uncharacteristic wildfire. We used data from the USDA Forest Service Aerial Detection Survey and ninety-six field plots to explore the relationships between physiographic and climate variables and Douglas-fir mortality. Our results provide strong evidence for a decline spiral in which Douglas-fir growing on hot, dry sites (predisposing factor) are further stressed by drought…
Publication Type: Journal Article
Fire severity infuences large wood and stream ecosystem responses in western Oregon watersheds
Year: 2023
Background. Wildfre is a landscape disturbance important for stream ecosystems and the recruitment of large wood (LW; LW describes wood in streams) into streams, with post-fre management also playing a role. We used a stratifed random sample of 4th-order watersheds that represent a range of pre-fre stand age and fre severity from unburned to entirely burned watersheds to 1) determine whether watershed stand age (pre-fre) or fre severity afected riparianoverstory survival, riparian coarse wood (CW; CW describes wood in riparian areas), LW, or in-stream physical, chemical, and biological…
Publication Type: Journal Article
Water utility engagement in wildfire mitigation in watersheds in the western United States
Year: 2023
Scaling up climate-adaptation in wildfire-prone watersheds requires innovative partnerships and funding. Water utilities are one stakeholder group that could play a role in these efforts. The overarching purpose of this study was to understand water utility engagement in wildfire mitigation efforts in the western United States. We conducted an online survey of water utilities in nine states and received 173 useable responses. While most (68%) respondents were concerned or very concerned about future wildfire events and the impact of wildfire on their operations, only 39% perceived their…
Economic Impacts of Fire, Restoration and Hazardous Fuel Reduction, Social and Community Impacts of Fire
Publication Type: Journal Article
Lightning-Ignited Wildfires in the Western United States: Ignition Precipitation and Associated Environmental Conditions
Year: 2023
Cloud-to-ground lightning with minimal rainfall (“dry” lightning) is a major wildfire ignition source in the western United States (WUS). Although dry lightning is commonly defined as occurring with <2.5 mm of daily-accumulated precipitation, a rigorous quantification of precipitation amounts concurrent with lightning-ignited wildfires (LIWs) is lacking. We combine wildfire, lightning and precipitation data sets to quantify these ignition precipitation amounts across ecoprovinces of the WUS. The median precipitation for all LIWs is 2.8 mm but varies with vegetation and fire characteristics…
Publication Type: Journal Article
Growing impact of wildfire on western US water supply
Year: 2022
Streamflow often increases after fire, but the persistence of this effect and its importance to present and future regional water resources are unclear. This paper addresses these knowledge gaps for the western United States (WUS), where annual forest fire area increased by more than 1,100% during 1984 to 2020. Among 72 forested basins across the WUS that burned between 1984 and 2019, the multibasin mean streamflow was significantly elevated by 0.19 SDs (P < 0.01) for an average of 6 water years postfire, compared to the range of results expected from climate alone. Sig- nificance is…
Publication Type: Journal Article
Merging prescribed fires and timber harvests in the Sierra Nevada: Burn season and pruning influences in young mixed conifer stands
Year: 2022
Highlights • Mortality of canopy trees was similar between spring and fall prescribed burns in 13-14 year old stands • Fall burns consumed more surface fuel without substantially high levels of canopy damage • Pre-fire pruning Pinus lambertiana and Calocecrus decurrens trees did not clearly reduce tree damage • Gap-based silviculture and prescribed fire can be merged to meet broad ecological goals Abstract In dry, productive forests where historically infrequent high-severity fires are now common, new silvicultural systems will be needed to better align management activity with the ecosystem'…
Publication Type: Journal Article
Spatial and temporal assessment of responder exposure to snag hazards in post-fire environments
Year: 2019
Researchers and managers increasingly recognize enterprise risk management as critical to addressing contemporary fire management challenges. Quantitative wildfire risk assessments contribute by parsing and mapping potentially contradictory positive and negative fire effects. However, these assessments disregard risks to fire responders because they only address social and ecological resources and assets. In this study, we begin to overcome this deficiency by using a novel modeling approach that integrates remote sensing, field inventories, imputation-based vegetation modeling, and empirical…
Publication Type: Journal Article
Short- and long-term effects of ponderosa pine fuel treatments intersected by the Egley Fire Complex, Oregon, USA
Year: 2019
Background Fuel treatments are widely used to alter fuels in forested ecosystems to mitigate wildfire behavior and effects. However, few studies have examined long-term ecological effects of interacting fuel treatments (commercial harvests, pre-commercial thinnings, pile and burning, and prescribed fire) and wildfire. Using annually fitted Landsat satellite-derived Normalized Burn Ratio (NBR) curves and paired pre-fire treated and untreated field sites, we tested changes in the differenced NBR (dNBR) and years since treatment as predictors of biophysical attributes one and nine years after…
Publication Type: Journal Article
Tamm Review: Reforestation for resilience in dry western U.S. forests
Year: 2019
The increasing frequency and severity of fire and drought events have negatively impacted the capacity and success of reforestation efforts in many dry, western U.S. forests. Challenges to reforestation include the cost and safety concerns of replanting large areas of standing dead trees, and high seedling and sapling mortality rates due to water stress, competing vegetation, and repeat fires that burn young plantations. Standard reforestation practices have emphasized establishing dense conifer cover with gridded planting, sometimes called 'pines in lines', followed by shrub control and pre-…
Publication Type: Journal Article
Evaluating Model Predictions of Fire Induced Tree Mortality Using Wildfire-Affected Forest Inventory Measurements
Year: 2019
Forest land managers rely on predictions of tree mortality generated from fire behavior models to identify stands for post-fire salvage and to design fuel reduction treatments that reduce mortality. A key challenge in improving the accuracy of these predictions is selecting appropriate wind and fuel moisture inputs. Our objective was to evaluate postfire mortality predictions using the Forest Vegetation Simulator Fire and Fuels Extension (FVS-FFE) to determine if using representative fire-weather data would improve prediction accuracy over two default weather scenarios. We used pre- and post-…
Publication Type: Journal Article
Decreasing fire season precipitation increased recent western US forest wildfire activity
Year: 2018
Western United States wildfire increases have been generally attributed to warming temperatures, either through effects on winter snowpack or summer evaporation. However, near-surface air temperature and evaporative demand are strongly influenced by moisture availability and these interactions and their role in regulating fire activity have never been fully explored. Here we show that previously unnoted declines in summer precipitation from 1979 to 2016 across 31–45% of the forested areas in the western United States are strongly associated with burned area variations. The number of wetting…
Publication Type: Journal Article
Wildfire smoke cools summer river and stream water temperatures
Year: 2018
To test the hypothesis that wildfire smoke can cool summer river and stream water temperatures by attenuating solar radiation and air temperature, we analyzed data on summer wildfire smoke, solar radiation, air temperatures, precipitation, river discharge, and water temperatures in the lower Klamath River Basin in Northern California. Previous studies have focused on the effect of combustion heat on water temperatures during fires and the effect of riparian vegetation losses on postfire water temperatures, but we know of no studies of the effects of wildfire smoke on river or stream water…
Publication Type: Journal Article
Multitemporal LiDAR improves estimates of fire severity in forested landscapes
Year: 2018
Landsat-based fire severity maps have limited ecological resolution, which can hinder assessments of change to specific resources. Therefore, we evaluated the use of pre- and post-fire LiDAR, and combined LiDAR with Landsat-based relative differenced Normalized Burn Ratio (RdNBR) estimates, to increase the accuracy and resolution of basal area mortality estimation. We vertically segmented point clouds and performed model selection on spectral and spatial pre- and post-fire LiDAR metrics and their absolute differences. Our best multitemporal LiDAR model included change in mean intensity values…
Publication Type: Journal Article
Fire and tree death: understanding and improving modeling of fire-induced tree mortality
Year: 2018
Each year wildland fires kill and injure trees on millions of forested hectares globally, affecting plant and animal biodiversity, carbon storage, hydrologic processes, and ecosystem services. The underlying mechanisms of fire-caused tree mortality remain poorly understood, however, limiting the ability to accurately predict mortality and develop robust modeling applications, especially under novel future climates. Virtually all post-fire tree mortality prediction systems are based on the same underlying empirical model described in Ryan and Reinhardt (1988 Can. J. For. Res. 18 1291–7), which…
Publication Type: Journal Article