Research Database
Displaying 21 - 40 of 229
A Systematic Review of Trends and Methodologies in Research on the Effects of Wildfires on the Avifauna in Temperate Forests
Year: 2025
Perceptions of the relationships between forest ecosystems and wildfires have evolved. The ecological role of wildfires is now recognised as essential for maintaining the functionality of fire-adapted forests. Although research on the impact of fire on fauna has grown notably, there is a lack of consensus on its global effects due to the variable responses of faunal communities across taxa. This review provides a bibliometric synthesis of wildfires and their impact on avifauna in temperate forests. It identifies patterns and gaps in research methodologies and offers recommendations for future…
Publication Type: Journal Article
Increasing Hydroclimatic Whiplash Can Amplify Wildfire Risk in a Warming Climate
Year: 2025
On January 7 and 8, 2025, a series of wind-driven wildfires occurred in Los Angeles County in Southern California. Two of these fires ignited in dense woody chaparral shrubland and immediately burned into adjacent populated areas–the Palisades Fire on the coastal slopes of the Santa Monica Mountains and the Eaton fire in the foothills of the San Gabriel Mountains. Both fires ultimately eclipsed the traditionally-defined “wildland-urban interface” boundaries by burning structure-to-structure as an urban conflagration. The scope of the devastation is staggering; at the time of writing, the…
Publication Type: Report
Modeling the probability of bark beetle-caused tree mortality as a function of watershed-scale host species presence and basal area
Year: 2025
In recent decades, bark beetle outbreaks have caused mass tree mortality in western US forests, which has led to altered wildfire characteristics, hydrological processes, and forest carbon dynamics. Understanding spatial variability in forest susceptibility to bark beetle outbreaks in the western US could inform strategic forest management to reduce wildfire risk, manage forest carbon, and plan for altered hydrology. The susceptibility of a forest stand to mortality by bark beetles depends on the availability and characteristics of trees of the host tree species. For multiple bark beetle…
Publication Type: Journal Article
Collapse and restoration of mature forest habitat in California
Year: 2025
Mature and old-growth forests provide critically important ecosystems services and wildlife habitats, but they are being lost at a rapid rate to uncharacteristic mega-disturbances. We developed a simulation system to project time-to-extinction for mature and old-growth forest habitat in the Sierra Nevada, California, USA. The simulation parameters were derived from a 1985–2022 empirical time-series of habitat for the southern Sierra Nevada fisher (Pekania pennanti), an endangered native mammal and old-forest obligate that has seen a 50 % decline in its habitat over the past…
Publication Type: Journal Article
Estimating the influence of field inventory sampling intensity on forest landscape model performance for determining high-severity wildfire risk
Year: 2024
Historically, fire has been essential in Southwestern US forests. However, a century of fire-exclusion and changing climate created forests which are more susceptible to uncharacteristically severe wildfires. Forest managers use a combination of thinning and prescribed burning to reduce forest density to help mitigate the risk of high-severity fires. These treatments are laborious and expensive, therefore optimizing their impact is crucial. Landscape simulation models can be useful in identifying high risk areas and assessing treatment effects, but uncertainties in these models can limit…
Publication Type: Journal Article
Hydrometeorology-wildfire relationship analysis based on a wildfire bivariate probabilistic framework in different ecoregions of the continental United States
Year: 2024
Wildfires are a natural part of the ecosystem in the U.S.. It is vital to classify wildfires using a comprehensive approach that simultaneously considers wildfire activity (the number of wildfires) and burned area. On this basis, the influence of hydrometeorological variables on wildfires can be further analyzed. Therefore, this study first classified wildfire types using a wildfire bivariate probability framework. Then, by considering six hydrometeorological variables, the dominant hydrometeorological variables for different wildfire types in 17 ecoregions of the United States were…
Publication Type: Journal Article
Future fire events are likely to be worse than climate projections indicate – these are some of the reasons why
Year: 2024
BackgroundClimate projections signal longer fire seasons and an increase in the number of dangerous fire weather days for much of the world including Australia.AimsHere we argue that heatwaves, dynamic fire–atmosphere interactions and increased fuel availability caused by drought will amplify potential fire behaviour well beyond projections based on calculations of afternoon forest fire danger derived from climate models.MethodsWe review meteorological dynamics contributing to enhanced fire behaviour during heatwaves, drawing on examples of…
Publication Type: Journal Article
Global rise in forest fire emissions linked to climate change in the extratropics
Year: 2024
Climate change increases fire-favorable weather in forests, but fire trends are also affected by multiple other controlling factors that are difficult to untangle. We use machine learning to systematically group forest ecoregions into 12 global forest pyromes, with each showing distinct sensitivities to climatic, human, and vegetation controls. This delineation revealed that rapidly increasing forest fire emissions in extratropical pyromes, linked to climate change, offset declining emissions in tropical pyromes during 2001 to 2023. Annual emissions tripled in one extratropical pyrome due to…
Publication Type: Journal Article
Simulated Future Shifts in Wildfire Regimes in Moist Forests of Pacific Northwest, USA
Year: 2024
Fire is an integral natural disturbance in the moist temperate forests of the Pacific Northwest of the United States, but future changes remain uncertain. Fire regimes in this climatically and biophysically diverse region are complex, but typically climate limited. One challenge for interpreting potential changes is conveying projection uncertainty. Using projections of Energy Release Component (ERC) derived from 12 global climate models (GCM) that vary in performance relative to the region's contemporary climate, we simulated thousands of plausible fire seasons with the stochastic spatial…
Publication Type: Journal Article
Near-term fire weather forecasting in the Pacific Northwest using 500-hPa map types
Year: 2024
BackgroundNear-term forecasts of fire danger based on predicted surface weather and fuel dryness are widely used to support the decisions of wildfire managers. The incorporation of synoptic-scale upper-air patterns into predictive models may provide additional value in operational forecasting.AimsIn this study, we assess the impact of synoptic-scale upper-air patterns on the occurrence of large wildfires and widespread fire outbreaks in the US Pacific Northwest. Additionally, we examine how discrete upper-air map types can augment subregional models of…
Publication Type: Journal Article
Visibility-informed mapping of potential firefighter lookout locations using maximum entropy modelling
Year: 2024
BackgroundSituational awareness is an essential component of wildland firefighter safety. In the US, crew lookouts provide situational awareness by proxy from ground-level locations with visibility of both fire and crew members.AimsTo use machine learning to predict potential lookout locations based on incident data, mapped visibility, topography, vegetation, and roads.MethodsLidar-derived topographic and fuel structural variables were used to generate maps of visibility across 30 study areas that possessed lookout location data. Visibility…
Publication Type: Journal Article
Wildfire management decisions outweigh mechanical treatment as the keystone to forest landscape adaptation
Year: 2024
BackgroundModern land management faces unprecedented uncertainty regarding future climates, novel disturbance regimes, and unanticipated ecological feedbacks. Mitigating this uncertainty requires a cohesive landscape management strategy that utilizes multiple methods to optimize benefits while hedging risks amidst uncertain futures. We used a process-based landscape simulation model (LANDIS-II) to forecast forest management, growth, climate effects, and future wildfire dynamics, and we distilled results using a decision support tool allowing us to examine tradeoffs between alternative…
Publication Type: Journal Article
Managing fire-prone forests in a time of decreasing carbon carrying capacity
Year: 2024
Changing climatic conditions are increasing overstory tree mortality in forests globally. This restructuring of the distribution of biomass is making already flammable forests more combustible, posing a major challenge for managing the transition to a lower biomass state. In western US dry conifer forests, tree density resulting from over a century of fire-exclusion practices has increased the risk of high-severity wildfire and susceptibility to climate-driven mortality. Reducing dead fuel loads will require new approaches to mitigate risk to the remaining live trees by preparing forests to…
Publication Type: Journal Article
Western larch regeneration more sensitive to wildfire-related factors than seasonal climate variability
Year: 2024
To understand the impacts of changing climate and wildfire activity on conifer forests, we studied how wildfire and post-fire seasonal climate conditions influence western larch (Larix occidentalis) regeneration across its range in the northwestern US. We destructively sampled 1651 seedlings from 57 sites across 32 fires that burned at moderate or high severity between 2000 and 2015; sites were within 100 m of reproductively mature western larch. Using dendrochronological methods, we estimated germination years of seedlings to calculate annual recruitment rates. We used boosted…
Publication Type: Journal Article
Tribal stewardship for resilient forest socio-ecosystems
Year: 2024
The Yurok Tribe, along with other tribal communities in northwest California, non-profit organizations, universities, and governmental agencies are working to restore forests and woodlands to be more resilient to wildfires, drought, pests and diseases. Our current work within ancestral Yurok territory is designing and evaluating effects of forest treatments including fuels reduction, tree harvesting, and intentional burning based upon indigenous knowledge and associated traditional stewardship practices. Central to these evaluations are the potential availability, quantity, and quality of…
Publication Type: Journal Article
Five social and ethical considerations for using wildfire visualizations as a communication tool
Year: 2024
BackgroundIncreased use of visualizations as wildfire communication tools with public and professional audiences—particularly 3D videos and virtual or augmented reality—invites discussion of their ethical use in varied social and temporal contexts. Existing studies focus on the use of such visualizations prior to fire events and commonly use hypothetical scenarios intended to motivate proactive mitigation or explore decision-making, overlooking the insights that those who have already experienced fire events can provide to improve user engagement and understanding of wildfire…
Publication Type: Journal Article
A model for rapid PM2.5 exposure estimates in wildfire conditions using routinely available data: rapidfire v0.1.3
Year: 2024
Urban smoke exposure events from large wildfires have become increasingly common in California and throughout the western United States. The ability to study the impacts of high smoke aerosol exposures from these events on the public is limited by the availability of high-quality, spatially resolved estimates of aerosol concentrations. Methods for assigning aerosol exposure often employ multiple data sets that are time-consuming to create and difficult to reproduce. As these events have gone from occasional to nearly annual in frequency, the need for rapid smoke exposure assessments has…
Publication Type: Journal Article
Informing proactive wildfire management that benefits vulnerable communities and ecological values
Year: 2024
- In response to mounting wildfire risks, land managers across the country will need to dramatically increase proactive wildfire management (e.g. fuel and forest health treatments). While human communities vary widely in their vulnerability to the impacts of fire, these discrepancies have rarely informed prioritizations for wildfire mitigation treatments. The ecological values and ecosystem services provided by forests have also typically been secondary considerations.
- To identify locations across the conterminous US where proactive wildfire management is likely to be effective…
Publication Type: Journal Article
Changing fire regimes and nuanced impacts on a critically imperiled species
Year: 2024
Wildfire activity throughout western North America is increasing which can have important consequences for species persistence. Native species have evolved disturbance-adapted traits that confer resilience to natural disturbance provided disturbances operate within their historical range of variability. This resilience can erode as disturbance regimes change and begin operating outside this range. We assessed wildfire impacts during 1987–2018 on the northern spotted owl, an imperiled species with complex relationships with late and early seral forest in the Pacific Northwest, USA. We analyzed…
Publication Type: Journal Article
A fast spectral recovery does not necessarily indicate post-fire forest recovery
Year: 2024
BackgroundClimate change has increased wildfire activity in the western USA and limited the capacity for forests to recover post-fire, especially in areas burned at high severity. Land managers urgently need a better understanding of the spatiotemporal variability in natural post-fire forest recovery to plan and implement active recovery projects. In burned areas, post-fire “spectral recovery”, determined by examining the trajectory of multispectral indices (e.g., normalized burn ratio) over time, generally corresponds with recovery of multiple post-fire vegetation types, including trees and…
Publication Type: Journal Article