Research Database
Displaying 41 - 60 of 73
Post-fire logging produces minimal persistent impacts on understory vegetation in northeastern Oregon, USA
Year: 2016
Post-fire forest management commonly requires accepting some negative ecological impacts from management activities in order to achieve management objectives. Managers need to know, however,whether ecological impacts from post-fire management activities are transient or cause long-term ecosystem degradation. We studied the long-term response of understory vegetation to two post-fire loggingtreatments – commercial salvage logging with and without additional fuel reduction logging – on a long-term post-fire logging experiment in northeastern Oregon, USA. We sampled understory plant coverand…
Publication Type: Journal Article
Positive effects of fire on birds may appear only under narrow combinations of fire severity and time-since-fire
Year: 2016
We conducted bird surveys in 10 of the first 11 years following a mixed-severity fire in a dry, low-elevation mixed-conifer forest in western Montana, United States. By defining fire in terms of fire severity and time-since-fire, and then comparing detection rates for species inside 15 combinations of fire severity and time-since-fire, with their rates of detection in unburned (but otherwise similar) forest outside the burn perimeter, we were able to assess more nuanced effects of fire on 50 bird species. A majority of species (60%) was detected significantly more frequently inside than…
Publication Type: Journal Article
Long-term effects of wildfire on greater sage-grouse - integrating population and ecosystem concepts for management in the Great Basin
Year: 2015
Greater sage-grouse (Centrocercus urophasianus; hereinafter, sage-grouse) are a sagebrush obligate species that has declined concomitantly with the loss and fragmentation of sagebrush ecosystems across most of its geographical range. The species currently is listed as a candidate for federal protection under the Endangered Species Act (ESA). Increasing wildfire frequency and changing climate frequently are identified as two environmental drivers that contribute to the decline of sage-grouse populations, yet few studies have rigorously quantified their effects on sage-grouse populations across…
Publication Type: Report
Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 1. Concepts for understanding and applying restoration
Year: 2015
Sagebrush steppe ecosystems in the United States currently occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of…
Publication Type: Report
Restoration handbook for sagebrush steppe ecosystems with emphasis on greater sage-grouse habitat—Part 2. Landscape level restoration decisions
Year: 2015
Sagebrush steppe ecosystems in the United States currently (2015) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of…
Publication Type: Report
Is fire exclusion in mountain big sagebrush communities prudent? Soil nutrient, plant diversity and arthropod response to burning
Year: 2014
Fire has largely been excluded from many mountain big sagebrush communities. Managers are reluctant to reintroduce fire, especially in communities without significant conifer encroachment, because of the decline in sagebrush-associated wildlife. Given this management direction, a better understanding of fire exclusion and burning effects is needed. We compared burned to unburned plots at six sites in Oregon. Soil nutrient availability generally increased with burning. Plant diversity increased with burning in the first post-burn year, but decreased by the third post-burn year. Burning altered…
Publication Type: Journal Article
Dry forest resilience varies under simulated climate-management scenarios in a central Oregon, USA landscape
Year: 2014
Determining appropriate actions to create or maintain landscapes resilient to climate change is challenging because of uncertainty associated with potential effects of climate change and their interactions with land management. We used a set of climate informed state-and-transition models to explore the effects of management and natural disturbances on vegetation composition and structure under different future climates. Models were run for dry forests of central Oregon under a fire suppression scenario (i.e., no management other than the continued suppression of wildfires) and an active…
Publication Type: Journal Article
Songbird response to wildfire in mixed-conifer forest in south-western Oregon
Year: 2014
We used 1 year of pre-fire and 4 years of post-fire data to quantify changes in the occurrence of birds at burned and unburned sites in a southern Oregon watershed after a 2500-ha wildfire. Our objectives were to identify bird species that increased or decreased as a result of this mixed-severity fire. Of the 27 species we investigated, we found evidence for fire-induced changes in the proportion of sites occupied by 13 species. Of these, most (8 species) were species that occurred at fewer sites after the fire than before. These changes were consistent with changes in vegetation composition…
Publication Type: Journal Article
Vegetation Recovery in Slash-Pile Scars Following Conifer Removal in a Grassland-Restoration Experiment
Year: 2014
A principal challenge to restoring tree-invaded grasslands is the removal of woody biomass. Burning of slash piles to reduce woody residues from forest restoration practices generates intense, prolonged heating, with adverse effects on soils and vegetation. In this study, we examined vegetation responses to pile burning following tree removal from conifer-invaded grasslands of the Oregon Cascades. We quantified the longevity and magnitude of fire effects by comparing ground conditions and the cover and richness of plant species in burn-scar centers (higher-intensity fire) and edges (lower-…
Publication Type: Journal Article
Beyond reducing fire hazard: fuel treatment impacts on overstory tree survival
Year: 2014
Fuel treatment implementation in dry forest types throughout the western United States is likely to increase in pace and scale in response to increasing incidence of large wildfires. While it is clear that properly implemented fuel treatments are effective at reducing hazardous fire potential, there are ancillary ecological effects that can impact forest resilience either positively or negatively depending on the specific elements examined, as well as treatment type, timing, and intensity. In this study, we use overstory tree growth responses, measured seven years after the most common fuel…
Publication Type: Journal Article
Effectiveness of fuel treatments for mitigating wildfire risk and sequestering forest carbon: A case study in the Lake Tahoe Basin
Year: 2014
Fuel-reduction treatments are used extensively to reduce wildfire risk and restore forest diversity and function. In the near future, increasing regulation of carbon (C) emissions may force forest managers to balance the use of fuel treatments for reducing wildfire risk against an alternative goal of C sequestration. The objective of this study was to evaluate how long-term fuel treatments mitigate wildfires and affect forest C. For the Lake Tahoe Basin in the central Sierra Nevada, USA, fuel treatment efficiency was explored with a landscape-scale simulation model, LANDIS-II, using five fuel…
Publication Type: Journal Article
Powered by Oregon - The potential for woody biomass
Year: 2013
As a fuel, wood has been with us since humans tamed fire. So what’s the big deal? Why the renewed interest in wood as a source of energy? If we imagine a way to power Oregon that is less dependent on fossil fuels, that is built instead on renewable and homegrown sources of energy, then woody fuel should be a significant part of the picture. Why do we import oil or propane to heat a rural town, for instance, when abundant, clean-burning fuel is a few miles away? Using local fuel creates jobs and keeps money at home. Many small Oregon towns could use more of both. Is it sustainable? Yes. In…
Publication Type: Report
Ecological effects of alternative fuel-reduction treatments: highlights of the National Fire and Fire Surrogate study (FSS)
Year: 2012
The 12-site National Fire and Fire Surrogate study (FFS) was a multivariate experiment that evaluated ecological consequences of alternative fuel-reduction treatments in seasonally dry forests of the US. Each site was a replicated experiment with a common design that compared an un-manipulated control, prescribed fire, mechanical and mechanical + fire treatments. Variables within the vegetation, fuelbed, forest floor and soil, bark beetles, tree diseases and wildlife were measured in 10-ha stands, and ecological response was compared among treatments at the site level, and across sites, to…
Publication Type: Journal Article
Projected range shifting by montane mammals under climate change: implications for Cascadia's National Parks
Year: 2012
We examined potential impacts of climate change over the next century on eight mammal species of conservation concern in western Washington State, under four warming scenarios. Using two species distribution models, including a logistic regression-based model and the "maximum entropy" (MaxEnt) model, we predicted the location and extent of the potential current and future range of each species based on a suite of environmental and geographical variables. Both models projected significant losses in range size within the focal area over the next century across all warming scenarios. Projections…
Publication Type: Journal Article
Long and Short-Term Effects of Fire on Soil Charcoal of a Conifer Forest in Southwest Oregon
Year: 2012
In 2002, the Biscuit Wildfire burned a portion of the previously established, replicated conifer unthinned and thinned experimental units of the Siskiyou Long-Term Ecosystem Productivity (LTEP) experiment, southwest Oregon. Charcoal C in pre and post-fire O horizon and mineral soil was quantified by physical separation and a peroxide-acid digestion method. The abrupt, short-term fire event caused O horizon charcoal C to increase by a factor of ten to >200 kg C ha−1. The thinned wildfire treatment produced less charcoal C than unthinned wildfire and thinned prescribed fire treatments. The…
Publication Type: Journal Article
Delayed Phenology and Reduced Fitness Associated with Climate Change in a Wild Hibernator
Year: 2012
The most commonly reported ecological effects of climate change are shifts in phenologies, in particular of warmer spring temperatures leading to earlier timing of key events. Among animals, however, these reports have been heavily biased towards avian phenologies, whereas we still know comparatively little about other seasonal adaptations, such as mammalian hibernation. Here we show a significant delay (0.47 days per year, over a 20-year period) in the hibernation emergence date of adult females in a wild population of Columbian ground squirrels in Alberta, Canada. This finding was related…
Publication Type: Journal Article
Seasonal variation in surface fuel moisture between unthinned and thinned mixed conifer forest, northern California, USA
Year: 2012
Reducing stand density is often used as a tool for mitigating the risk of high-intensity crown fires. However, concern has been expressed that opening stands might lead to greater drying of surface fuels, contributing to increased fire risk. The objective of this study was to determine whether woody fuel moisture differed between unthinned and thinned mixed-conifer stands. Sections of logs representing the 1000- and 10 000-h fuel sizes were placed at 72 stations within treatment units in the fall (autumn) of 2007. Following snow-melt in 2008, 10-h fuel sticks were added and all fuels were…
Publication Type: Journal Article
A physiological trait-based approach to predicting the responses of species to experimental climate warming
Year: 2012
Physiological tolerance of environmental conditions can influence species-level responses to climate change. Here, we used species-specific thermal tolerances to predict the community responses of ant species to experimental forest-floor warming at the northern and southern boundaries of temperate hardwood forests in eastern North America. We then compared the predictive ability of thermal tolerance vs. correlative species distribution models (SDMs) which are popular forecasting tools for modeling the effects of climate change. Thermal tolerances predicted the responses of 19 ant species to…
Publication Type: Journal Article
Alteration and Recovery of Slash Pile Burn Sites in the Restoration of a Fire-Maintained Ecosystem
Year: 2012
Restoration practices incorporating timber harvest (e.g. to remove undesirable species or reduce tree densities) may generate unmerchantable wood debris that is piled and burned for fuel reduction. Slash pile burns are common in longleaf pine ecosystem restoration that involves hardwood removal before reintroduction of frequent prescribed fire. In this context, long-lasting effects of slash pile burns may complicate restoration outcomes due to unintended alterations to vegetation, soils, and the soil seed bank. In this study, our objectives were to (1) examine alterations to the soil seed…
Publication Type: Journal Article
Fuel Treatment Effectiveness in California Yellow Pine and Mixed Conifer Forests
Year: 2012
We assessed the effectiveness of forest fuel thinning projects that explicitly removed surface and ladder fuels (all but one were combined mechanical and prescribed fire/pile burn prescriptions) in reducing fire severity and tree mortality in 12 forest fires that burned in eastern and southern California between 2005 and 2011. All treatments and fires occurred in yellow pine or mixed conifer forests, in a variety of landscape conditions. Most fires burned under warm, dry conditions, with moderate to high winds. With few exceptions, fire severity measures (bole char height, scorch and torch…
Publication Type: Journal Article