Research Database
Displaying 201 - 220 of 245
Examining fire-prone forest landscapes as coupled human and natural systems
Year: 2014
Fire-prone landscapes are not well studied as coupled human and natural systems (CHANS) and present many challengesfor understanding and promoting adaptive behaviors and institutions. Here, we explore how heterogeneity, feedbacks, and externaldrivers in this type of natural hazard system can lead to complexity and can limit the development of more adaptive approaches topolicy and management. Institutions and social networks can counter these limitations and promote adaptation. We also develop aconceptual model that includes a robust characterization of social subsystems for a fire-prone…
Publication Type: Journal Article
The Ecology and Management of Moist Mixed-Conifer Forests in Eastern Oregon and Washington: a Synthesis of the Relevant Biophysical Science and Implications for Future Land Management
Year: 2014
Land managers in the Pacific Northwest have reported a need for updated scientific information on the ecology and management of mixed-conifer forests east of the Cascade Range in Oregon and Washington. Of particular concern are the moist mixed-conifer forests, which have become drought-stressed and vulnerable to high-severity fire after decades of human disturbances and climate warming. This synthesis responds to this need. We present a compilation of existing research across multiple natural resource issues, including disturbance regimes, the legacy effects of past management actions,…
Publication Type: Report
Challenges of assessing fire and burn severity using field measures, remote sensing and modelling
Year: 2014
Comprehensive assessment of ecological change after fires have burned forests and rangelands is important if we are to understand, predict and measure fire effects. We highlight the challenges in effective assessment of fire and burn severity in the field and using both remote sensing and simulation models. We draw on diverse recent research for guidance on assessing fire effects on vegetation and soil using field methods, remote sensing and models. We suggest that instead of collapsing many diverse, complex and interacting fire effects into a single severity index, the effects of fire should…
Publication Type: Journal Article
Optimising fuel treatments over time and space
Year: 2013
Fuel treatments have been widely used as a tool to reduce catastrophic wildland fire risks in many forests around the world. However, it is a challenging task for forest managers to prioritise where, when and how to implement fuel treatments across a large forest landscape. In this study, an optimisation model was developed for long-term fuel management decisions at a landscape scale. Using a simulated annealing algorithm, the model optimises locations and timing of fuel treatments, while considering changes in forest dynamics over time, fire behaviour and spread, values at risk, and…
Publication Type: Journal Article
Dry Forest Zone Maps 2013
Year: 2013
The Dry Forest Investment Zone (DFIZ) is a five-year project to address common natural resource-based economic development challenges through increased networking and capacity building at a regional scale. Sustainable Northwest leads this project in partnership with Wallowa Resources in northeastern Oregon, the Watershed Research and Training Center in northern California, and the Ecosystem Workforce Program at the University of Oregon. The central components of the DFIZ strategy are: 1) To build strong local nonprofit organizations and collaborative processes to achieve forest and economic…
Publication Type: Report
Pre-wildfire fuel reduction treatments result in more resilient forest structure a decade after wildfire
Year: 2013
Increasing size and severity of wildfires have led to an interest in the effectiveness of forest fuels treatments on reducing fire severity and post-wildfire fuels. Our objective was to contrast stand structure and surface fuel loadings on treated and untreated sites within the 2002 Rodeo–Chediski Fire area. Data from 140 plots on seven paired treated–untreated sites indicated that pre-wildfire treatments reduced fire severity compared with untreated sites. In 2011, coarse woody debris loading (woody material >7.62 cm in diameter) was 257% higher and fine woody debris (woody material <7…
Publication Type: Journal Article
Pre-wildfire fuel reduction treatments result in more resilient forest structure a decade after wildfire
Year: 2013
Increasing size and severity of wildfires have led to an interest in the effectiveness of forest fuels treatments on reducing fire severity and post-wildfire fuels. Our objective was to contrast stand structure and surface fuel loadings on treated and untreated sites within the 2002 Rodeo-Chediski Fire area. Data from 140 plots on seven paired treated-untreated sites indicated that pre-wildfire treatments reduced fire severity compared with untreated sites. In 2011, coarse woody debris loading (woody material.7.62 cm in diameter) was 257% higher and fine woody debris (woody material,7.62 cm)…
Publication Type: Journal Article
Latent resilience in ponderosa pine forest: effects of resumed frequent fire
Year: 2013
Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels,…
Publication Type: Journal Article
Examination of the wind speed limit function in the Rothermel surface fire spread model
Year: 2013
The Rothermel surface fire spread model includes a wind speed limit, above which predicted rate of spread is constant. Complete derivation of the wind limit as a function of reaction intensity is given, along with an alternate result based on a changed assumption. Evidence indicates that both the original and the revised wind limits are too restrictive. Wind limit is based in part on data collected on the 7 February 1967 Tasmanian grassland fires. A reanalysis of the data indicates that these fires might not have been spreading in fully cured continuous grasslands, as assumed. In addition,…
Publication Type: Journal Article
ArcFuels10 System Overview
Year: 2013
Fire behavior modeling and geospatial analyses can provide tremendous insight for land managers as they grapple with the complex problems frequently encountered in wildfire risk assessments and fire and fuels management planning. Fuel management often is a particularly complicated process in which the benefits and potential impacts of fuel treatments need to be demonstrated in the context of land management goals and public expectations. The fuel treatment planning process is complicated by the lack of data assimilation among fire behavior models and weak linkages to geographic information…
Publication Type: Report
Assessing forest vegetation and fire simulation model performance after the Cold Springs wildfire, Washington, USA
Year: 2013
Given that resource managers rely on computer simulation models when it is difficult or expensive to obtain vital information directly, it is important to evaluate how well a particular model satisfies applications for which it is designed. The Forest Vegetation Simulator (FVS) is used widely for forest management in the US, and its scope and complexity continue to increase. This paper focuses on the accuracy of estimates made by the Fire and Fuels Extension (FFE-FVS) predictions through comparisons between model outputs and measured post-fire conditions for the Cold Springs wildfire and on…
Publication Type: Journal Article
Modelling conditional burn probability patterns for large wildland fires
Year: 2013
We present a technique for modelling conditional burn probability patterns in two dimensions for large wildland fires. The intended use for the model is strategic program planning when information about future fire weather and event durations is unavailable and estimates of the average probabilistic shape and extent of large fires on a landscape are needed. To model average conditional burn probability patterns, we organised historical fire data from Yellowstone National Park, USA, into a set of grids; one grid per fire. We captured various spatial relationships inherent in the gridded data…
Publication Type: Journal Article
Wildland Fire management: Are actively managed forests more resilient than passively managed forests?
Year: 2013
Large areas of federal lands in the western states are currently at high risk of severe wildfire and have many insect and disease problems, indicating a significant decline in forest health and resilience. Although research studies have not been done that would measure whether actively managed forests are more resilient to wildfires than passively managed forests, results from studies of hazardous fuels treatment effectiveness and the economic benefits from avoided costs of future wildfire suppression due to fuels treatment can be used to support an affirmative reply to the question. If a…
Publication Type: Report
Assessing potential climate change effects on vegetation using a linked model approach
Year: 2013
We developed a process that links the mechanistic power of dynamic global vegetation models with the detailed vegetation dynamics of state-and-transition models to project local vegetation shifts driven by projected climate change. We applied our approach to central Oregon (USA) ecosystems using three climate change scenarios to assess potential future changes in species composition and community structure. Our results suggest that: (1) legacy effects incorporated in state-and-transition models realistically dampen climate change effects on vegetation; (2) species-specific response to fire…
Publication Type: Journal Article
Current status and future needs of the BehavePlus fire modeling system
Year: 2013
The BehavePlus Fire Modeling System is among the most widely used systems for wildland fire prediction. It is designed for use in a range of tasks including wildfire behaviour prediction, prescribed fire planning, fire investigation, fuel hazard assessment, fire model understanding, communication and research. BehavePlus is based on mathematical models for fire behaviour, fire effects and fire environment. It is a point system for which conditions are constant for each calculation, but is designed to encourage examination of the effect of a range of conditions through tables and graphs.…
Publication Type: Journal Article
Restoring forest resilience: From reference spatial patterns to silvicultural prescriptions and monitoring
Year: 2013
Stand-level spatial pattern influences key aspects of resilience and ecosystem function such as disturbance behavior, regeneration, snow retention, and habitat quality in frequent-fire pine and mixed-conifer forests. Reference sites, from both pre-settlement era reconstructions and contemporary forests with active fire regimes, indicate that frequent-fire forests are complex mosaics of individual trees, tree clumps, and openings. There is a broad scientific consensus that restoration treatments should seek to restore this mosaic pattern in order to restore resilience and maintain ecosystem…
Publication Type: Journal Article
Using niche models with climate projections to inform conservation management decisions
Year: 2012
Conservation science strives to inform management decisions. Applying niche models in concert with future climate projections to project species vulnerability to extinction, range size loss, or distribution shifts has emerged as a potentially useful tool for informing resource management decisions. Making climate change niche modeling useful to conservation decisions requires centering studies on the types of decisions that are made regarding the focal taxa of a niche model study. Recent recommendations for climate adaptation strategies suggest four types of decision makers: policy, habitat…
Publication Type: Journal Article
Climate Change and Disruptions to Global Fire Activity
Year: 2012
Future disruptions to fire activity will threaten ecosystems and human well-being throughout the world, yet there are few fire projections at global scales and almost none from a broad range of global climate models (GCMs). Here we integrate global fire datasets and environmental covariates to build spatial statistical models of fire probability at a 0.58 resolution and examine environmental controls on fire activity. Fire models are driven by climate norms from 16 GCMs (A2 emissions scenario) to assess the magnitude and direction of change over two time periods, 2010–2039 and 2070–2099. From…
Publication Type: Journal Article
Climate Change in Grasslands, Shrublands, and Deserts of the Interior American West: A Review and Needs Assessment
Year: 2012
Recent research and species distribution modeling predict large changes in the distributions of species and vegetation types in the western interior of the United States in response to climate change. This volume reviews existing climate models that predict species and vegetation changes in the western United States, and it synthesizes knowledge about climate change impacts on the native fauna and flora of grasslands, shrublands and deserts of the interior American West. Species' responses will depend not only on their physiological tolerances but also on their phenology, establishment…
Publication Type: Report
Projecting future distributions of ecosystem climate niches: Uncertainties and management applications
Year: 2012
Projecting future distributions of ecosystems or species climate niches has widely been used to assess the potential impacts of climate change. However, variability in such projections for the future periods, particularly the variability arising from uncertain future climates, remains a critical challenge for incorporating these projections into climate change adaptation strategies. We combined the use of a robust statistical modeling technique with a simple consensus approach consolidating projected outcomes for multiple climate change scenarios, and exemplify how the results could guide…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 9
- 10
- 11
- 12
- 13
- Next page
- Last page