Research Database
Displaying 81 - 100 of 112
Conditions favouring Bromus tectorum dominance of endangered sagebrush steppe ecosystems
Year: 2013
Ecosystem invasibility is determined by combinations of environmental variables, invader attributes, disturbance regimes, competitive abilities of resident species and evolutionary history between residents and disturbance regimes. Understanding the relative importance of each factor is critical to limiting future invasions and restoring ecosystems. We investigated factors potentially controlling Bromus tectorum invasions into Artemisia tridentata ssp. wyomingensis communities across 75 sites in the Great Basin. We measured soil texture, cattle grazing intensity, gaps among perennial plants…
Publication Type: Journal Article
Using native annual plants to restore post-fire habitats in western North America
Year: 2013
Increasing fire frequencies and uncharacteristic severe fires have created a need for improved restoration methods across rangelands in western North America. Traditional restoration seed mixtures of native perennial mid- to late-seral plant species may not be suitable for intensely burned sites that have been returned to an early-seral condition. Under such conditions, native annual plant species are likely to be more successful at becoming established and competing with exotic annual plant species, such as Bromus tectorum L., for resources. We used a field study in Colorado and Idaho, USA,…
Publication Type: Journal Article
Relationships between climate and macroscale area burned in the western United States
Year: 2013
Increased wildfire activity (e.g. number of starts, area burned, fire behaviour) across the western United States in recent decades has heightened interest in resolving climate–fire relationships. Macroscale climate–fire relationships were examined in forested and non-forested lands for eight Geographic Area Coordination Centers in the western United States, using area burned derived from the Monitoring Trends in Burn Severity dataset (1984–2010). Fire-specific biophysical variables including fire danger and water balance metrics were considered in addition to standard climate variables of…
Publication Type: Journal Article
Does seeding after wildfires in rangelands reduce erosion or invasive species?
Year: 2013
Mitigation of ecological damage caused by rangeland wildfires has historically been an issue restricted to the western United States. It has focused on conservation of ecosystem function through reducing soil erosion and spread of invasive plants. Effectiveness of mitigation treatments has been debated recently. We reviewed recent literature to conduct a meta-analysis of seeding after wildfires to determine if seedings may (1) protect ecosystems against soil erosion and (2) reduce invasion or abundance of undesirable nonnative plant species. Effectiveness of postfire seedings was examined in…
Publication Type: Journal Article
Climate Change Quarterly: Summer 2013
Year: 2013
A historical record of Pacific Northwest (defined here as west of the Cascade Mountains in Washington and Oregon) heat waves is identified using the U.S. Historical Climate Network, version 2, daily data (1901–2009). Both daytime and nighttime events are examined, defining a heat wave as three consecutive days above the 99th percentile for the maximum and minimum temperature anomalies separately. Although the synoptic characteristics of the daytime and nighttime heat events are similar, they do indicate some differences between the two types of events. Most notable is a stronger influence of…
Publication Type: Report
Models for predicting fuel consumption in sage-brush-dominated ecosystems
Year: 2013
Fuel consumption predictions are necessary to accurately estimate or model fire effects, including pollutant emissions during wildland fires. Fuel and environmental measurements on a series of operational prescribed fires were used to develop empirical models for predicting fuel consumption in big sagebrush (Artemisia tridentata Nutt.) ecosystems. Models are proposed for predicting fuel consumption during prescribed fires in the fall and the spring. Total prefire fuel loading ranged from 5.3–23.6 Mg · ha−1; between 32% and 92% of the total loading was composed of live and dead big sagebrush.…
Publication Type: Journal Article
Influence of climate and environment on post-fire recovery of mountain sagbrush
Year: 2013
In arid and semi-arid landscapes around the world, wildfire plays a key role in maintaining species diversity. Dominant plant associations may depend upon particular fire regime characteristics for their persistence. Mountain shrub communities in high-elevation landscapes of the Intermountain West, USA, are strongly influenced by the post-fire recovery dynamics of the obligate-seeding shrub, mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana [Rydb.] Beetle). This species is a short-distance disperser with a short-lived seedbank, leading to highly variable post-fire recovery…
Publication Type: Journal Article
Photo Series for Quantifying Natural Fuels Volume XI : Eastern Oregon Sagebrush - Steppe and Spotted Owl Nesting Habitat in the Pacific Northwest
Year: 2012
Three series of photographs display a range of natural conditions and fuel loadings for sagebrush-steppe types that are ecotonal with grasses, western juniper, and ponderosa pine in eastern Oregon, and one series of photographs displays a range of natural conditions and fuel loadings for northern spotted owl nesting habitat in forest types in Washington and Oregon. Each group of photos includes inventory information summarizing vegetation composition, structure, and loading; woody material loading and density by size class; forest floor depth and loading; and various site characteristics. The…
Publication Type: Report
Atmospheric Interactions with Wildland Fire Behaviour I. Basic Surface Interactions, Vertical Profiles and Synoptic Structures
Year: 2012
This paper is the first of two reviewing scientific literature from 100 years of research addressing interactions between the atmosphere and fire behaviour. These papers consider research on the interactions between the fuels burning at any instant and the atmosphere, and the interactions between the atmosphere and those fuels that will eventually burn in a given fire. This first paper reviews the progression from the surface atmospheric properties of temperature, humidity and wind to horizontal and vertical synoptic structures and ends with vertical atmospheric profiles. (The companion paper…
Publication Type: Journal Article
The push and pull of climate change causes heterogeneous shifts in avian elevational ranges
Year: 2012
Projected effects of climate change on animal distributions primarily focus on consequences of temperature and largely ignore impacts of altered precipitation. While much evidence supports temperature-driven range shifts, there is substantial heterogeneity in species' responses that remains poorly understood. We resampled breeding ranges of birds across three elevational transects in the Sierra Nevada Mountains, USA, that were extensively surveyed in the early 20th century. Presence absence comparisons were made at 77 sites and occupancy models were used to separate significant range shifts…
Publication Type: Journal Article
Delayed Phenology and Reduced Fitness Associated with Climate Change in a Wild Hibernator
Year: 2012
The most commonly reported ecological effects of climate change are shifts in phenologies, in particular of warmer spring temperatures leading to earlier timing of key events. Among animals, however, these reports have been heavily biased towards avian phenologies, whereas we still know comparatively little about other seasonal adaptations, such as mammalian hibernation. Here we show a significant delay (0.47 days per year, over a 20-year period) in the hibernation emergence date of adult females in a wild population of Columbian ground squirrels in Alberta, Canada. This finding was related…
Publication Type: Journal Article
Simulating effects of climate change and ecological restoration on fire behaviour in a south-western USA ponderosa pine forest
Year: 2012
Global climate change has the potential to affect future wildfire activity, particularly in south-western USA ponderosa pine forests that have been substantially altered by land-use practices and aggressive fire suppression. Using two regional general circulation models for the A1B greenhouse gas emission scenario, Australia's CSIRO:MK3 and Germany's MPIM:ECHAMS, we predicted fire behaviour under the 80th, 90th and 97th percentiles of future fire-weather conditions at a study site on the Kaibab National Forest, Arizona. We then altered the fuel structure by simulating alternative ecological…
Publication Type: Journal Article
Trajectories of change in sagebrush steppe vegetation communities in relation to multiple wildfires
Year: 2012
Repeated perturbations, both biotic and abiotic, can lead to fundamental changes in the nature of ecosystems, including changes in state. Sagebrush steppe communities provide important habitat for wildlife and grazing for livestock. Fire is an integral part of these systems, but there is concern that increased ignition frequencies and invasive species are fundamentally altering them. Despite these issues, the majority of studies of fire effects in systems dominated by Artemisia tridentata wyomingensis have focused on the effects of single burns. The Arid Lands Ecology Reserve (ALE), in south-…
Publication Type: Journal Article
Climatic, Landform, Microtopographic, and Overstory Canopy Controls of Tree Invasion in a Subalpine Meadow Landscape, Oregon Cascades, USA
Year: 2012
Tree invasions have been documented throughout Northern Hemisphere high elevation meadows, as well as globally in many grass and forb-dominated ecosystems. Tree invasions are often associated with large-scale changes in climate or disturbance regimes, but are fundamentally driven by regeneration processes influenced by interactions between climatic, topographic, and biotic factors at multiple spatial scales. The purpose of this research was to quantify spatiotemporal patterns of meadow invasion; and how climate, larger landforms, topography, and overstory trees have interactively influenced…
Publication Type: Journal Article
Commonalities of Carbon Dioxide Exchange in Semiarid Regions with Monsoon and Mediterranean Climates
Year: 2012
Comparing biosphereatmosphere carbon exchange across monsoon (warm-season rainfall) and Mediterranean (cool-season rainfall) regimes can yield information about the interaction between energy and water limitation. Using data collected from eddy covariance towers over grass and shrub ecosystems in Arizona, USA and Almeria, Spain, we used net ecosystem carbon dioxide exchange (NEE), gross ecosystem production (GEP), and other meteorological variables to examine the effects of the different precipitation seasonality. Considerable crossover behavior occurred between the two rainfall regimes. As…
Publication Type: Journal Article
Changes to Dryland Rainfall Result in Rapid Moss Mortality and Altered Soil Fertility
Year: 2012
Arid and semi-arid ecosystems cover ~40% of Earth's terrestrial surface, but we know little about how climate change will affect these widespread landscapes. Like many drylands, the Colorado Plateau in southwestern United States is predicted to experience elevated temperatures and alterations to the timing and amount of annual precipitation. We used a factorial warming and supplemental rainfall experiment on the Colorado Plateau to show that altered precipitation resulted in pronounced mortality of the widespread moss Syntrichia caninervis. Increased frequency of 1.2mm summer rainfall events…
Publication Type: Journal Article
Cheating Cheatgrass: New research to combat a wily invasive weed
Year: 2012
Cheatgrass and its cousin, red brome, are exotic annual grasses that have invaded and altered ecosystem dynamics in more than 41 million acres of desert shrublands between the Rockies and the Cascade-Sierra chain. A fungus naturally associated with these Bromus species has been found lethal to the plants’ soil-banked dormant seeds. Supported by the Joint Fire Science Program (JFSP), researchers Susan Meyer, Phil Allen, and Julie Beckstead cultured this fungus, Pyrenophora semeniperda, in the laboratory and developed an experimental field application that, in some trials, killed all the…
Publication Type: Report
Climate and Weather Influences on Spatial Temporal Patterns of Mountain Pine Beetle Populations in Washington and Oregon
Year: 2012
Widespread outbreaks of mountain pine beetle in North America have drawn the attention of scientists, forest managers, and the public. There is strong evidence that climate change has contributed to the extent and severity of recent outbreaks. Scientists are interested in quantifying relationships between bark beetle population dynamics and trends in climate. Process models that simulate climate suitability for mountain pine beetle outbreaks have advanced our understanding of beetle population dynamics; however, there are few studies that have assessed their accuracy across multiple outbreaks…
Publication Type: Journal Article
Fire Effects on the Spatial Patterning of Soil Properties in Sagebrush Steppe, USA: A Meta-Analysis
Year: 2012
Understanding effects of changes in ecological disturbance regimes on soil properties, and capacity of soil properties to resist disturbance, is important for assessing ecological condition. In this meta-analysis, we examined the resilience of surface soil properties and their spatial patterning to disturbance by fire in sagebrush steppe of North America – a biome currently experiencing increases in wildfire due to climate change. We reviewed 39 studies that reported on soil properties for sagebrush steppe with distinct microsite (undershrub and interspace) patterning that was or was not…
Publication Type: Journal Article
The Age of Western Wildfires
Year: 2012
The 2012 wildfire season isn’t over yet, but already this year is shaping up to be the one of the worst on record in the American West. According to the National Interagency Fire Center, with nearly two months still to go in the fire season, the total area already burned this year is 30 percent more than in an average year, and fires have consumed more than 8.6 million acres, an area larger than the state of Maryland. Yet, what defines a “typical” wildfire year in the West is changing. In the past 40 years, rising spring and summer temperatures, along with shrinking winter snowpack, have…
Publication Type: Report