Research Database
Displaying 1 - 7 of 7
Long-term tree population growth can predict woody encroachment patterns
Year: 2025
Recent increases in woody plant density in dryland ecosystems—or “woody encroachment”—around the world are often attributed to land-use changes such as increased livestock grazing and wildfire suppression or to global environmental trends (e.g., increasing atmospheric carbon dioxide). While such changes have undoubtedly impacted ecosystem structure and function, the evidence linking them to woody encroachment is mixed, and the underlying processes are not fully understood. To clarify the role of demographic processes in changing woody plant abundance, we conducted a meta-analysis of tree age…
Publication Type: Journal Article
Trailing edge contractions common in interior western US trees under varying disturbances
Year: 2025
As climate warms, trees are expected to track their ideal climate, referred to as ‘range shifts’; however, lags in tree range shifts are currently common. Disturbance events that kill trees may help catalyse tree migrations by removing biotic competition, but can also limit regeneration by eliminating seed sources, and it is unknown whether disturbance will facilitate or inhibit tree migrations in the face of climate change. Here we use national forest inventory data to show that seedlings of 15 dominant tree species in the interior western United States occupy historically cooler areas than…
Publication Type: Journal Article
Going slow to go fast: landscape designs to achieve multiple benefits
Year: 2025
Introduction: Growing concerns about fire across the western United States, and commensurate emphasis on treating expansive areas over the next 2 decades, have created a need to develop tools for managers to assess management benefits and impacts across spatial scales. We modeled outcomes associated with two common forest management objectives: fire risk reduction (fire), and enhancing multiple resource benefits (ecosystem resilience).Method: We evaluated the compatibility of these two objectives across ca. 1-million ha in the central Sierra Nevada,…
Publication Type: Journal Article
Quantifying Western US tree carbon stocks and sequestration from fires
Year: 2025
Background: Forest ecosystems function as the largest terrestrial carbon sink globally. In the Western US, fires play a crucial role in modifying forest carbon storage, sequestration capacity, and the transfer of carbon from live to dead carbon pools. We utilized remeasurements of more than 700,000 trees from 24,000 locations from the US Department of Agriculture Forest Service’s Forest Inventory and Analysis program (FIA) and incorporated supplementary information on wildfires from the Monitoring Trends in Burn Severity dataset. These datasets allowed us to develop models that examined the…
Publication Type: Journal Article
Wildfires drive multi-year water quality degradation over the western United States
Year: 2025
Wildfires can dramatically alter water quality, resulting in severe implications for human and freshwater systems. However, regional-scale assessments of these impacts are often limited by data scarcity. Here, we unify observations from 1984–2021 in 245 burned watersheds across the western United States, comparing post-fire signals to baseline levels from 293 unburned basins. Organic carbon and phosphorus exhibit significantly elevated levels (p ≤ 0.05) in the first 1–5 years post-fire, while nitrogen and sediment show significant increases up to 8 years post-fire. During peak post-…
Publication Type: Journal Article
The western North American forestland carbon sink: will our climate commitments go up in smoke?
Year: 2025
Pathways to achieving net-zero and net-negative greenhouse-gas (GHG) emission targets rely on land-based contributions to carbon (C) sequestration. However, projections of future contributions neglect to consider ecosystems, climate change, legacy impacts of continental-scale fire exclusion, forest accretion and densification, and a century or more of management. These influences predispose western North American forests (wNAFs) to severe drought impacts, large and chronic outbreaks of insect pests, and increasingly large and severe wildfires. To realistically assess contributions of future…
Publication Type: Journal Article
Multi-scale assessment of wildfire use on carbon stocks in the Sierra Nevada, CA
Year: 2025
BackgroundThe active use of wildfire to meet forest management objectives is an important tool to increase the scale of forest restoration in dry, historically frequent-fire forests. While there are many benefits of reintroducing fire to these forests, the impact of wildland fire use policies in frequent-fire forests on aboveground carbon stocks has not yet been studied. In this study, we begin to fill this knowledge gap by assessing how fire frequency and severity affected aboveground carbon dynamics in two basins in the Sierra Nevada with a history of wildfire use over the…
Publication Type: Journal Article