Research Database
Displaying 21 - 40 of 143
Optimising disaster response: opportunities and challenges with Uncrewed Aircraft System (UAS) technology in response to the 2020 Labour Day wildfires in Oregon, USA
Year: 2024
BackgroundThe expanding use of Uncrewed Aircraft System (UAS) technology in disaster response shows its immense potential to enhance emergency management. However, there is limited documentation on the challenges and data management procedures related to UAS operation.AimsThis manuscript documents and analyses the operational, technical, political, and social challenges encountered during the deployment of UAS, providing insights into the complexities of using these technologies in disaster situations.MethodsThis manuscript documents and…
Publication Type: Journal Article
Forest structural complexity and ignition pattern influence simulated prescribed fire effects
Year: 2024
Forest structural characteristics, the burning environment, and the choice of ignition pattern each influence prescribed fire behaviors and resulting fire effects; however, few studies examine the influences and interactions of these factors. Understanding how interactions among these drivers can influence prescribed fire behavior and effects is crucial for executing prescribed fires that can safely and effectively meet management objectives. To analyze the interactions between the fuels complex and ignition patterns, we used FIRETEC, a three-dimensional computational fluid dynamics fire…
Publication Type: Journal Article
Global variation in ecoregion flammability thresholds
Year: 2024
Anthropogenic climate change is altering the state of worldwide fire regimes, including by increasing the number of days per year when vegetation is dry enough to burn. Indices representing the percent moisture content of dead fine fuels as derived from meteorological data have been used to assess geographic patterns and temporal trends in vegetation flammability. To date, this approach has assumed a single flammability threshold, typically between 8 and 12%, controlling fire potential regardless of the vegetation type or climate domain. Here we use remotely sensed burnt area products and a…
Publication Type: Journal Article
Generating fuel consumption maps on prescribed fire experiments from airborne laser scanning
Year: 2024
Background. Characterisation of fuel consumption provides critical insights into fire behaviour, effects, and emissions. Stand-replacing prescribed fire experiments in central Utah offered an opportunity to generate consumption estimates in coordination with other research efforts. Aims. We sought to generate fuel consumption maps using pre- and post-fire airborne laser scanning (ALS) and ground measurements and to test the spatial transferability of the ALSderived fuel models. Methods. Using random forest (RF), we empirically modelled fuel load and estimated consumption from pre-…
Publication Type: Journal Article
Exploring the use of satellite Earth observation active wildland fire hotspot data via open access web platforms
Year: 2024
Globally, managing wildland fire is increasing in complexity. Satellite Earth Observation (EO) data, specifically active fire ‘hotspot’ data, is often used to inform wildland fire management. This study explores hotspot data usage via web traffic data (‘user counts’) for the FIRMS, GWIS and EFFIS web portals between September 2019 and April 2023. Global active fire data use is characterized by multi-month periods of relatively low, stable user counts, interspersed with periodic spikes (4.1x median monthly activity) of activity broadly aligned with the North American / European fire season (…
Publication Type: Journal Article
Pixels to pyrometrics: UAS-derived infrared imagery to evaluate and monitor prescribed fire behaviour and effects
Year: 2024
Background: Prescribed fire is vital for fuel reduction and ecological restoration, but the effectiveness and fine-scale interactions are poorly understood. Aims: We developed methods for processing uncrewed aircraft systems (UAS) imagery into spatially explicit pyrometrics, including measurements of fuel consumption, rate of spread, and residence time to quantitatively measure three prescribed fires. Methods: We collected infrared (IR) imagery continuously (0.2 Hz) over prescribed burns and one experimental calibration burn, capturing…
Publication Type: Journal Article
Variability in weather and site properties affect fuel and fire behavior following fuel treatments in semiarid sagebrush-steppe
Year: 2024
Fuel-treatments targeting shrubs and fire-prone exotic annual grasses (EAGs) are increasingly used to mitigate increased wildfire risks in arid and semiarid environments, and understanding their response to natural factors is needed for effective landscape management. Using field-data collected over four years from fuel-break treatments in semiarid sagebrush-steppe, we asked 1) how the outcomes of EAG and sagebrush fuel treatments varied with site biophysical properties, climate, and weather, and 2) how predictions of fire behavior using the Fuel Characteristic Classification System fire…
Publication Type: Journal Article
Snow-cover remote sensing of conifer tree recovery in high-severity burn patches
Year: 2024
The number of large, high-severity wildfires has been increasing across the western United States over the last several decades. It is not fully understood how changes in the frequency of large, severe wildfires may impact the resilience of conifer forests, due to alterations in regeneration success or failure. Our research investigates 30 years of conifer recovery patterns within 34 high-severity wildfire complexes (1988–1991) of the Northern Rocky Mountains. We evaluate the capability of snow-cover Landsat to characterize conifer tree recolonization of high-severity burn patches. Snow-…
Publication Type: Journal Article
Long-term sensitivity of ponderosa pine axial resin ducts to harvesting and prescribed burning
Year: 2024
Forest restoration treatments primarily aimed at reducing fuel load and preventing high-severity wildfires can also influence resilience to other disturbances. Many pine forests in temperate regions are subject to tree-killing bark beetle outbreaks (e.g., Dendroctonus, Ips), whose frequency and intensity are expected to increase with future climatic changes. Restoration treatments have the potential to increase resistance to bark beetle attacks, yet the underlying mechanisms of this response are still unclear. While the effect of forest restoration treatments on tree growth…
Publication Type: Journal Article
Ladder fuels rather than canopy volumes consistently predict wildfire severity even in extreme topographic-weather conditions
Year: 2024
Drivers of forest wildfire severity include fuels, topography and weather. However, because only fuels can be actively managed, quantifying their effects on severity has become an urgent research priority. Here we employed GEDI spaceborne lidar to consistently assess how pre-fire forest fuel structure affected wildfire severity across 42 California wildfires between 2019–2021. Using a spatial-hierarchical modeling framework, we found a positive concave-down relationship between GEDI-derived fuel structure and wildfire severity, marked by increasing severity with greater fuel loads until a…
Publication Type: Journal Article
Fire intensity effects on serotinous seed survival
Year: 2024
BackgroundIn fire-prone environments, some species store their seeds in canopy cones (serotiny), which provides seeds protection from the passage of fire before stimulating seed release. However, the capacity of serotinous cones to protect seeds under high intensity fire is uncertain. Beyond simply “high” versus “low” fire intensity or severity, we must understand the influence of the specific characteristics of fire intensity—heat flux, exposure duration, and their dynamics—on serotinous seed survival. In this study, we tested serotinous seed survival under transient levels of…
Publication Type: Journal Article
Landsat assessment of variable spectral recovery linked to post-fire forest structure in dry sub-boreal forests
Year: 2024
Forest disturbances such as wildfires can dramatically alter forest structure and composition, increasing the likelihood of ecosystem changes. Up-to-date and accurate measures of post-disturbance forest recovery in managed forests are critical, particularly for silvicultural planning. Measuring the live and dead vegetation post-fire is challenging because areas impacted by wildfire may be remote, difficult to access, and/or dangerous to survey. The difficulties of post-fire monitoring are compounded by the global increase in the frequency and severity of disturbances, as expansion of…
Publication Type: Journal Article
The fastest-growing and most destructive fires in the US (2001 to 2020)
Year: 2024
The most destructive and deadly wildfires in US history were also fast. Using satellite data, we analyzed the daily growth rates of more than 60,000 fires from 2001 to 2020 across the contiguous US. Nearly half of the ecoregions experienced destructive fast fires that grew more than 1620 hectares in 1 day. These fires accounted for 78% of structures destroyed and 61% of suppression costs ($18.9 billion). From 2001 to 2020, the average peak daily growth rate for these fires more than doubled (+249% relative to 2001) in the Western US. Nearly 3 million structures were within 4 kilometers of a…
Publication Type: Journal Article
Leveraging the next generation of spaceborne Earth observations for fuel monitoring and wildland fire management
Year: 2024
Managing fuels is a key strategy for mitigating the negative impacts of wildfires on people and the environment. The use of satellite-based Earth observation data has become an important tool for managers to optimize fuel treatment planning at regional scales. Fortunately, several new sensors have been launched in the last few years, providing novel opportunities to enhance fuel characterization. Herein, we summarize the potential improvements in fuel characterization at large scale (i.e., hundreds to thousands of km2) with high spatial and spectral resolution arising from the use of new…
Publication Type: Journal Article
How are long-term stand structure, fuel profiles, and potential fire behavior affected by fuel treatment type and intensity in Interior Pacific Northwest forests?
Year: 2024
Fuel treatments are commonly applied to increase resilience to wildfire in dry and historically frequent-fire forests of western North America. The long-term effects of fuel treatments on forest structure, fuel profiles (amount and configuration of fuels), and potential wildfire behavior are not well known relative to short-term effects. Additionally, long-term treatment effects on the development of stand structure and fuel profiles have rarely been compared to the long-term effects of pre-treatment conditions, treatment intensity, and site productivity. In this study, we addressed these…
Publication Type: Journal Article
A fast spectral recovery does not necessarily indicate post-fire forest recovery
Year: 2024
BackgroundClimate change has increased wildfire activity in the western USA and limited the capacity for forests to recover post-fire, especially in areas burned at high severity. Land managers urgently need a better understanding of the spatiotemporal variability in natural post-fire forest recovery to plan and implement active recovery projects. In burned areas, post-fire “spectral recovery”, determined by examining the trajectory of multispectral indices (e.g., normalized burn ratio) over time, generally corresponds with recovery of multiple post-fire vegetation types, including trees and…
Publication Type: Journal Article
Drivers and Impacts of the Record-Breaking 2023 Wildfire Season in Canada
Year: 2024
The 2023 wildfire season in Canada was unprecedented in its scale and intensity, spanning from mid-April to late October and across much of the forested regions of Canada. Here, we summarize the main causes and impacts of this exceptional season. The record-breaking total area burned (~15 Mha)can be attributed to several environmental factors that converged early in the season: early snowmelt, multi annual drought conditions in western Canada, and the rapid transition to drought in eastern Canada. Anthropogenic climate change enabled sustained extreme fire weather conditions, as the meanMay–…
Publication Type: Journal Article
Molecular shifts in dissolved organic matter along a burn severity continuum for common land cover types in the Pacific Northwest, USA
Year: 2024
Increasing wildfire severity is of growing concern in the western United States, with consequences for the production, composition, and mobilization of dissolved organic matter (DOM) from terrestrial to aquatic systems. Our current understanding of wildfire impacted DOM (often termed pyrogenic DOM) composition is largely built from temperature-based studies that can be difficult to extrapolate to field conditions, which are often defined by ‘burn severity’, or the post-wildfire impact observed at a site. Thus, burn severity can encapsulate a broader range of fire and environmental conditions…
Publication Type: Journal Article
Review of fuel treatment effects on fuels, fire behavior and ecological resilience in sagebrush (Artemisia spp.) ecosystems in the Western U.S.
Year: 2024
BackgroundSagebrush ecosystems are experiencing increases in wildfire extent and severity. Most research on vegetation treatments that reduce fuels and fire risk has been short term (2–3 years) and focused on ecological responses. We review causes of altered fire regimes and summarize literature on the longer-term effects of treatments that modify (1) shrub fuels, (2) pinyon and juniper canopy fuels, and (3) fine herbaceous fuels. We describe treatment effects on fuels, fire behavior, ecological resilience, and resistance to invasive annual grasses.ResultsOur review revealed tradeoffs in…
Publication Type: Journal Article
Visibility-informed mapping of potential firefighter lookout locations using maximum entropy modelling
Year: 2024
BackgroundSituational awareness is an essential component of wildland firefighter safety. In the US, crew lookouts provide situational awareness by proxy from ground-level locations with visibility of both fire and crew members.AimsTo use machine learning to predict potential lookout locations based on incident data, mapped visibility, topography, vegetation, and roads.MethodsLidar-derived topographic and fuel structural variables were used to generate maps of visibility across 30 study areas that possessed lookout location data. Visibility…
Publication Type: Journal Article