Research Database
Displaying 21 - 40 of 181
Assessing fuel treatments and burn severity using global and local analyses
Year: 2025
BackgroundWildfires in western U.S. dry forest ecosystems have increased in size and severity during recent decades due primarily to more than a century of fire suppression, exclusion of Indigenous fire, and a rapidly warming climate. Fuel treatments have been employed to restore historical forest conditions and mitigate burn severity. However, their influence on burn severity in the context of other environmental variables and firefighting operations has not been extensively explored. The 2021 Bootleg Fire in south-central Oregon provided an opportunity to evaluate the effectiveness of…
Publication Type: Journal Article
Extreme Colorado 2020 fires: remotely sensed burn severity influenced by treatments, forest types, and days of burning
Year: 2025
Forest managers are faced with escalating size, severity, and cost of wildfires. To mitigate this, U.S. federal land management agencies are increasing forest treatments such as mechanical thinning and prescribed fire. While there is a growing body of work on treatment–wildfire interactions, treatment impacts in increasingly extreme wildfire situations remain unknown. Here we examined how treatments and previous wildfires influenced remotely sensed burn severity across four 2020 wildfires in Colorado that burned over 238 000 ha, 10 000 ha of which were treated or experienced…
Publication Type: Journal Article
Implications of recent wildfires for forest management on federal lands in the Pacific Northwest, USA
Year: 2025
Adoption of the Northwest Forest Plan (NWFP) in 1994 marked a pivotal moment in federal forest management in the Pacific Northwest, shifting focus away from intensive timber harvest toward an ecosystem management approach that emphasized late successional and old forest habitat with the creation of a reserve network across moist and dry forest zones. Thirty years after implementation, concerns over accelerating wildfire threats have prompted efforts to adapt the Plan to a warming climate, yet the actual effects of recent fires on NWFP forests are not well understood. In this study, we…
Publication Type: Journal Article
Collapse and restoration of mature forest habitat in California
Year: 2025
Mature and old-growth forests provide critically important ecosystems services and wildlife habitats, but they are being lost at a rapid rate to uncharacteristic mega-disturbances. We developed a simulation system to project time-to-extinction for mature and old-growth forest habitat in the Sierra Nevada, California, USA. The simulation parameters were derived from a 1985–2022 empirical time-series of habitat for the southern Sierra Nevada fisher (Pekania pennanti), an endangered native mammal and old-forest obligate that has seen a 50 % decline in its habitat over the past…
Publication Type: Journal Article
Methods to assess fire-induced tree mortality: review of fire behaviour proxy and real fire experiments
Year: 2025
Background: The increased interest in why and how trees die from fire has led to several syntheses of the potential mechanisms of fire-induced tree mortality. However, these generally neglect to consider experimental methods used to simulate fire behaviour conditions.Aims: To describe, evaluate the appropriateness of and provide a historical timeline of the different approaches that have been used to simulate fire behaviour in fire-induced tree mortality studies.Methods: We conducted a historical review of the different actual and fire proxy methods that have been used to…
Publication Type: Journal Article
Intensifying Fire Season Aridity Portends Ongoing Expansion of Severe Wildfire in Western US Forests
Year: 2025
Area burned by wildfire has increased in western US forests and elsewhere over recent decades coincident with warmer and drier fire seasons. However, high–severity fire—fire that kills all or most trees—is arguably a more important metric of fire activity given its destabilizing influence on forest ecosystems and direct and indirect impacts to human communities. Here, we quantified area burned and area burned severely in western US forests from 1985 to 2022 and evaluated trends through time. We also assessed key relationships between area burned, extent and proportion burned severely…
Publication Type: Journal Article
Following megafires fishes thrive and amphibians persist even in severely burned watersheds
Year: 2025
Wildfires are increasing in severity, frequency and size, potentially threatening freshwater species that adapted under different disturbance regimes. However, few wildfire studies have comprehensively evaluated freshwater populations and assemblages following wildfire over broad spatial scales while accounting for post-fire salvage practices in the watershed. We reveal that stream vertebrate assemblages across thirty 4th order streams, spanning a range of both watershed fire severity and post-fire forest management extent, were minimally influenced by immediate effects of fire alone (…
Publication Type: Journal Article
Prescribed fire, managed burning, and previous wildfires reduce the severity of a southwestern US gigafire
Year: 2025
In many parts of the western United States, wildfires are becoming larger and more severe, threatening the persistence of forest ecosystems. Understanding the ways in which management activities such as prescribed fire and managed wildfire can mitigate fire severity is essential for developing effective forest conservation strategies. We evaluated the effects of previous fuels reduction treatments, including prescribed fire and wildfire managed for resource benefit, and other wildfires on the burn severity of the 2022 Black Fire in southwestern New Mexico, USA. The Black Fire burned over 131,…
Publication Type: Journal Article
Leveraging wildfire to augment forest management and amplify forest resilience
Year: 2025
Successive catastrophic wildfire seasons in western North America have escalated the urgency around reducing fire risk to communities and ecosystems. In historically frequent-fire forests, fuel buildup as a result of fire exclusion is contributing to increased fire severity. The probability of high-severity fire can be reduced by active forest management that reduces fuels, prompting federal and state agencies to commit significant resources to increase the pace and scale of fuel reduction treatments. However, lower severity areas of wildfires also have the potential to act as “treatments,”…
Publication Type: Journal Article
Impact of Thinning Strategy, Surface Fuel Loading and Burning Conditions on Fuel Treatment Efficacy in Ponderosa Pine Dominated Forests of the Southern Rocky Mountains
Year: 2025
Managers across the western US seek effective fuel treatment strategies to mitigate hazardous fuel loads and risks of high severity fire in dry conifer forests. Conventional fuel hazard reduction treatments emphasis reducing canopy fuel continuity and surface fuel loading using an even spaced, thin-from-below approach, with pile or broadcast burning of residual surface fuels. Such treatments often result in forest structures that differ from the historical conditions. Ecological restoration treatments emphasize enhancing structural heterogeneity but may produce less fire-resistant stands…
Publication Type: Journal Article
Near real-time indicators of burn severity in the western U.S. from active fire tracking
Year: 2025
BackgroundTimely information on wildfire burn severity is critical to assess and mitigate potential post-fire impacts on soils, vegetation, and hillslope stability. Tracking individual fire spread and intensity using satellite active fire data provides a pathway to near real-time (NRT) information. Here, we generated a large database (n = 2177) of wildfire events in the western United States (U.S.) between 2012 and 2021 using active fire detections from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (SNPP) satellite and…
Publication Type: Journal Article
Generating fuel consumption maps on prescribed fire experiments from airborne laser scanning
Year: 2024
Background. Characterisation of fuel consumption provides critical insights into fire behaviour, effects, and emissions. Stand-replacing prescribed fire experiments in central Utah offered an opportunity to generate consumption estimates in coordination with other research efforts. Aims. We sought to generate fuel consumption maps using pre- and post-fire airborne laser scanning (ALS) and ground measurements and to test the spatial transferability of the ALSderived fuel models. Methods. Using random forest (RF), we empirically modelled fuel load and estimated consumption from pre-…
Publication Type: Journal Article
Severity of a megafire reduced by interactions of wildland fire suppression operations and previous burns
Year: 2024
Burned area and proportion of high severity fire have been increasing in the western USA, and reducing wildfire severity with fuel treatments or other means is key for maintaining fire-prone dry forests and avoiding fire-catalyzed forest loss. Despite the unprecedented scope of firefighting operations in recent years, their contribution to patterns of wildfire severity is rarely quantified. Here we investigate how wildland fire suppression operations and past fire severity interacted to affect severity patterns of the northern third of the 374 000 ha Dixie Fire, the largest single fire in…
Publication Type: Journal Article
Abiotic Factors Modify Ponderosa Pine Regeneration Outcomes After High-Severity Fire
Year: 2024
Large high-severity burn patches are increasingly common in southwestern US dry conifer forests. Seed-obligate conifers often fail to quickly regenerate large patches because their seeds rarely travel the distances required to reach core patch area. Abiotic factors may further alter the distance seeds can travel to regenerate a patch, which would change expected post-fire regeneration patterns. We used the presence and density of ponderosa pine regeneration as a proxy for seed dispersal to quantify the effect of abiotic factors on seed dispersal into high-severity patches. We established 45…
Publication Type: Journal Article
Contemporary fires are less frequent but more severe in dry conifer forests of the southwestern United States
Year: 2024
Wildfires in the southwestern United States are increasingly frequent and severe, but whether these trends exceed historical norms remains contested. Here we combine dendroecological records, satellite-derived burn severity, and field measured tree mortality to compare historical (1700-1880) and contemporary (1985-2020) fire regimes at tree-ring fire-scar sites in Arizona and New Mexico. We found that contemporary fire frequency, including recent, record fire years, is still <20% of historical levels. Since 1985, the fire return interval averages 58.8 years, compared to 11.4 years before…
Publication Type: Journal Article
Estimating the influence of field inventory sampling intensity on forest landscape model performance for determining high-severity wildfire risk
Year: 2024
Historically, fire has been essential in Southwestern US forests. However, a century of fire-exclusion and changing climate created forests which are more susceptible to uncharacteristically severe wildfires. Forest managers use a combination of thinning and prescribed burning to reduce forest density to help mitigate the risk of high-severity fires. These treatments are laborious and expensive, therefore optimizing their impact is crucial. Landscape simulation models can be useful in identifying high risk areas and assessing treatment effects, but uncertainties in these models can limit…
Publication Type: Journal Article
Trees have similar growth responses to first-entry fires and reburns following long-term fire exclusion
Year: 2024
Managing fire ignitions for resource benefit decreases fuel loads and reduces the risk of high-severity fire in fire-suppressed dry conifer forests. However, the reintroduction of low-severity wildfire can injure trees, which may decrease their growth after fire. Post-fire growth responses could change from first-entry fires to reburns, as first-entry fires reduce fuel loads and the vulnerability among trees to fire effects, which may result in trees sustaining less damage during reburns. To determine whether trees had growth responses that varied from first-entry fires to reburns, we cored…
Publication Type: Journal Article
Ladder fuels rather than canopy volumes consistently predict wildfire severity even in extreme topographic-weather conditions
Year: 2024
Drivers of forest wildfire severity include fuels, topography and weather. However, because only fuels can be actively managed, quantifying their effects on severity has become an urgent research priority. Here we employed GEDI spaceborne lidar to consistently assess how pre-fire forest fuel structure affected wildfire severity across 42 California wildfires between 2019–2021. Using a spatial-hierarchical modeling framework, we found a positive concave-down relationship between GEDI-derived fuel structure and wildfire severity, marked by increasing severity with greater fuel loads until a…
Publication Type: Journal Article
Climate limits vegetation green-up more than slope, soil erodibility, and immediate precipitation following high-severity wildfire
Year: 2024
BackgroundIn the southwestern United States, post-fire vegetation recovery is increasingly variable in forest burned at high severity. Many factors, including temperature, drought, and erosion, can reduce post-fire vegetation recovery rates. Here, we examined how year-of-fire precipitation variability, topography, and soils influenced post-fire vegetation recovery in the southwestern United States as measured by greenness to determine whether erosion-related factors would have persistent effects in the longer post-fire period. We modeled relationships between post-fire vegetation and these…
Publication Type: Journal Article
Stream chemical response is mediated by hydrologic connectivity and fire severity in a Pacific Northwest forest
Year: 2024
Large-scale wildfires are becoming increasingly common in the wet forests of the Pacific Northwest (USA), with predicted increases in fire prevalence under future climate scenarios. Wildfires can alter streamflow response to precipitation and mobilize water quality constituents, which pose a risk to aquatic ecosystems and downstream drinking water treatment. Research often focuses on the impacts of high-severity wildfires, with stream biogeochemical responses to low- and mixed-severity fires often understudied, particularly during seasonal shifts in hydrologic connectivity between hillslopes…
Publication Type: Journal Article