Research Database
Displaying 101 - 120 of 210
Increasing trends in high-severity fire in the southwestern USA from 1984 to 2015
Year: 2019
In the last three decades, over 4.1 million hectares have burned in Arizona and New Mexico and the largest fires in documented history have occurred in the past two decades. Changes in burn severity over time, however, have not been well documented in forest and woodland ecosystems in the southwestern US. Using remotely sensed burn severity data from 1621 fires (>404 ha), we assessed trends from 1984 to 2015 in Arizona and New Mexico in (1) number of fires and total area burned in all vegetation types; (2) area burned, area of high-severity, and percent of high-severity fire in all forest…
Publication Type: Journal Article
Collaborations and capacities to transform fire management
Year: 2019
Wildfires bring stark attention to interactions among climate change, fire, forests, and livelihoods, prompting urgent calls for change from policy-makers and the public. Management options vary, but in many fire-adapted forests, the message from the scientific community is clear: Adapt to living with fire, reduce fuels and homes in the wildland-urban interface (WUI), and strategically restore fire to ecosystems (1–4). Yet, changes to fire management outcomes have been elusive. For example, across the primarily public forestlands of the U.S. West, prescribed fires (intentionally lighted fires…
Publication Type: Journal Article
Making the Transition from Science Delivery to Knowledge Coproduction in Boundary Spanning: A Case Study of the Alaska Fire Science Consortium
Year: 2019
Boundary organizations facilitate two-way, sustained interaction and communication between research and practitioner spheres, deliver existing science, and develop new, actionable scientific information to address emerging social–ecological questions applicable to decision-making. There is an increasing emphasis on the role of boundary organizations in facilitating knowledge coproduction, which is collaborative research with end users to develop actionable scientific information for decision-making. However, a deeper understanding of how boundary organizations and knowledge coproduction work…
Publication Type: Journal Article
Predicting increasing high severity area burned for three forested regions in the western United States using extreme value theory
Year: 2019
More than 70 years of fire suppression by federal land management agencies has interrupted fire regimes in much of the western United States. The result of missed fire cycles is a buildup of both surface and canopy fuels in many forest ecosystems, increasing the risk of severe fire. The frequency and size of fires has increased in recent decades, as has the area burned with high severity in some ecosystems. A number of studies have examined controls on high severity fire occurrence, but none have yet determined what controls the extent of high severity fire. We developed statistical models…
Publication Type: Journal Article
Use of Science and Modeling by Practitioners in Landscape-Scale Management Decisions
Year: 2019
Scientific knowledge and tools have central roles in contemporary federal forest programs that promote restoration in large landscapes and across ownerships. Although we know much about the role of science in decisionmaking and ways that science can be better linked to practice, we know less about manager perspectives about science and science tools, and the perceived role of both in planning. We surveyed Forest Service resource managers in the western United States to address this knowledge gap. Respondents engaged most frequently with science via reading research publications; direct…
Publication Type: Journal Article
Risk Management and Analytics in Wildfire Response
Year: 2019
Purpose of Review The objectives of this paper are to briefly review basic risk management and analytics concepts, describe their nexus in relation to wildfire response, demonstrate real-world application of analytics to support response decisions and organizational learning, and outline an analytics strategy for the future. Recent Findings Analytics can improve decision-making and organizational performance across a variety of areas from sports to business to real-time emergency response. A lack of robust descriptive analytics on wildfire incident response effectiveness is a bottleneck for…
Publication Type: Journal Article
Short- and long-term effects of ponderosa pine fuel treatments intersected by the Egley Fire Complex, Oregon, USA
Year: 2019
Background Fuel treatments are widely used to alter fuels in forested ecosystems to mitigate wildfire behavior and effects. However, few studies have examined long-term ecological effects of interacting fuel treatments (commercial harvests, pre-commercial thinnings, pile and burning, and prescribed fire) and wildfire. Using annually fitted Landsat satellite-derived Normalized Burn Ratio (NBR) curves and paired pre-fire treated and untreated field sites, we tested changes in the differenced NBR (dNBR) and years since treatment as predictors of biophysical attributes one and nine years after…
Publication Type: Journal Article
Tree traits influence response to fire severity in the western Oregon Cascades, USA
Year: 2018
Wildfire is an important disturbance process in western North American conifer forests. To better understand forest response to fire, we used generalized additive models to analyze tree mortality and long-term (1 to 25 years post-fire) radial growth patterns of trees that survived fire across a burn severity gradient in the western Cascades of Oregon. We also used species-specific leaf-area models derived from sapwood estimates to investigate the linkage between photosynthetic capacity and growth response. Larger trees and shade intolerant trees had a higher probability of surviving fire.…
Publication Type: Journal Article
Severe fire weather and intensive forest management increase fire severity in a multi-ownership landscape
Year: 2018
Many studies have examined how fuels, topography, climate, and fire weather influence fire severity. Less is known about how different forest management practices influence fire severity in multi‐owner landscapes, despite costly and controversial suppression of wildfires that do not acknowledge ownership boundaries. In 2013, the Douglas Complex burned over 19,000 ha of Oregon & California Railroad (O&C) lands in Southwestern Oregon, USA. O&C lands are composed of a checkerboard of private industrial and federal forestland (Bureau of Land Management, BLM) with contrasting…
Publication Type: Journal Article
Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014
Year: 2018
A warming climate, fire exclusion, and land cover changes are altering the conditions that produced historical fire regimes and facilitating increased recent wildfire activity in the northwestern United States. Understanding the impacts of changing fire regimes on forest recruitment and succession, species distributions, carbon cycling, and ecosystem services is critical, but challenging across broad spatial scales. One important and understudied aspect of fire regimes is the unburned area within fire perimeters; these areas can function as fire refugia across the landscape during and after…
Publication Type: Journal Article
Living with Wildland Fire in America: Building New Bridges between Policy, Science, and Management
Year: 2018
In his October 26, 2017 commentary in these pages, Dr. Tom Zimmerman highlights a number of ongoing and future challenges faced by wildland fire management. To address these challenges he also identifies an important role for science and in particular management-relevant wildland fire research. Here, we first briefly elaborate on Dr. Zimmerman’s challenges and how they relate to new opportunities for the role of science. Second, we focus on three additional institutional or “cultural” barriers or divides that should be acknowledged and addressed when forging a path forward for wildland fire…
Publication Type: Journal Article
The influence of fire history on soil nutrients and vegetation cover in mixed-severity fire regime forests of the eastern Olympic Peninsula, Washington, USA
Year: 2018
The rain shadow forests of the Olympic Peninsula exemplify a mixed-severity fire regime class in the midst of a highly productive landscape where spatial heterogeneity of fire severity may have significant implications for below and aboveground post-fire recovery. The purpose of this study was to quantify the impacts of wildfire on forest soil carbon (C) and nitrogen (N) pools and assess the relationship of pyrogenic carbon (PyC) to soil processes in this mixed-severity ecosystem. We established a 112-year fire chronosequence with nine similar forest stands ranging in time since lastfire (TSF…
Publication Type: Journal Article
High-severity fire: Evaluating its key drivers and mapping its probability across western US forests
Year: 2018
Wildland fire is a critical process in forests of the western United States (US). Variation in fire behavior, which is heavily influenced by fuel loading, terrain, weather, and vegetation type, leads to heterogeneity in fire severity across landscapes. The relative influence of these factors in driving fire severity, however, is poorly understood. Here, we explore the drivers of high-severity fire for forested ecoregions in the western US over the period 2002–2015. Fire severity was quantified using a satellite-inferred index of severity, the relativized burn ratio. For each ecoregion, we…
Publication Type: Journal Article
A review of challenges to determining and demonstrating efficiency of large fire management
Year: 2017
Characterising the impacts of wildland fire and fire suppression is critical information for fire management decision-making. Here, we focus on decisions related to the rare larger and longer-duration fire events, where the scope and scale of decision-making can be far broader than initial response efforts, and where determining and demonstrating efficiency of strategies and actions can be particularly troublesome. We organise our review around key decision factors such as context, complexity, alternatives, consequences and uncertainty, and for illustration contrast fire management in…
Publication Type: Journal Article
Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA
Year: 2017
Topography, weather, and fuels are known factors driving fire behavior, but the degree to which each contributes to the spatial pattern of fire severity under different conditions remains poorly understood. The variability in severity within the boundaries of the 2006 wildfires that burned in the Klamath Mountains, northern California, along with data on burn conditions and new analytical tools, presented an opportunity to evaluate factors influencing fire severity under burning conditions representative of those where management of wildfire for resource benefit is most likely. Fire severity…
Publication Type: Journal Article
Prescribed Fire in Grassland Butterfly Habitat: Targeting Weather and Fuel Conditions to Reduce Soil Temperatures and Burn Severity
Year: 2017
Prescribed burning is a primary tool for habitat restoration and management in fire-adapted grasslands. Concerns about detrimental effects of burning on butterfly populations, however, can inhibit implementation of treatments. Burning in cool and humid conditions is likely to result in lowered soil temperatures and to produce patches of low burn severity, both of which would enhance survival of butterfly larvae at or near the soil surface. In this study, we burned 20 experimental plots in South Puget Sound, Washington, USA, prairies across a range of weather and fuel conditions to address the…
Publication Type: Journal Article
Effects of accelerated wildfire on future fire regimes and implications for the United States federal fire policy
Year: 2017
Wildland fire suppression practices in the western United States are being widely scrutinized by policymakers and scientists as costs escalate and large fires increasingly affect social and ecological values. One potential solution is to change current fire suppression tactics to intentionally increase the area burned under conditions when risks are acceptable to managers and fires can be used to achieve long-term restoration goals in fire adapted forests. We conducted experiments with the Envision landscape model to simulate increased levels of wildfire over a 50-year period on a 1.2 million…
Publication Type: Journal Article
Adapt to more wildfire in western North American forests as climate changes
Year: 2017
Wildfires across western North America have increased in number and size over the past three decades, and this trend will continue in response to further warming. As a consequence, the wildland–urban interface is projected to experience substantially higher risk of climate-driven fires in the coming decades. Although many plants, animals, and ecosystem services benefit from fire, it is unknown how ecosystems will respond to increased burning and warming. Policy and management have focused primarily on specified resilience approaches aimed at resistance to wildfire and restoration of areas…
Publication Type: Journal Article
Fires following Bark Beetles: Factors Controlling Severity and Disturbance Interactions in Ponderosa Pine
Year: 2017
Previous studies have suggested that bark beetles and fires can be interacting disturbances, whereby bark beetle–caused tree mortality can alter the risk and severity of subsequent wildland fires. However, there remains considerable uncertainty around the type and magnitude of the interaction between fires following bark beetle attacks, especially in drier forest types such as those dominated by ponderosa pine (Pinus ponderosa Lawson & C. Lawson). We used a full factorial design across a range of factors thought to control bark beetle−fire interactions, including the temporal phase of the…
Publication Type: Journal Article
A framework for developing safe and effective large-fire response in a new fire management paradigm
Year: 2017
The impacts of wildfires have increased in recent decades because of historical forest and fire management, a rapidly changing climate, and an increasingly populated wildland urban interface. This increasingly complex fire environment highlights the importance of developing robust tools to support risk-informed decision making. While tools have been developed to aid fire management, few have focused on large-fire management and those that have typically simplified the decision environment such that they are not operationally relevant. Additionally, fire managers need to be able to evaluate…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 4
- 5
- 6
- 7
- 8
- …
- Next page
- Last page