Research Database
Displaying 81 - 100 of 306
A roadmap for pyrodiversity science
Year: 2023
Background
Contemporary and projected shifts in global fire regimes highlight the importance of understanding how fire affects ecosystem function and biodiversity across taxa and geographies. Pyrodiversity, or heterogeneity in fire history, is often an important driver of biodiversity, though it has been largely overlooked until relatively recently. In this paper, we synthesise previous research to develop a theoretical framework on pyrodiversity–biodiversity relationships and propose future research and conservation management directions.
Theoretical Framework
Pyrodiversity may affect…
Publication Type: Journal Article
Homeowner firewise behaviors in fire-prone central Oregon: An exploration of the attitudinal, situational, and cultural worldviews impacting pre-fire mitigation actions
Year: 2023
As a result of climate change and past management practices, wildfires are becoming larger and occurring more frequently than ever before in the Western U.S. In order to mitigate the effects of this growing threat, fire management agencies such as the U.S. Forest Service have encouraged residents in at-risk communities to protect their homes, property, and communities by adopting Firewise recommendations. Using a survey of wildland-urban interface (WUI) homeowners in fire-prone Deschutes County, Oregon, this study examines homeowners' participation in Firewise activities. While the majority…
Publication Type: Journal Article
Different approaches make comparing studies of burn severity challenging: a review of methods used to link remotely sensed data with the Composite Burn Index
Year: 2023
The Composite Burn Index (CBI) is commonly linked to remotely sensed data to understand spatial and temporal patterns of burn severity. However, a comprehensive understanding of the tradeoffs between different methods used to model CBI with remotely sensed data is lacking. To help understand the current state of the science, provide a blueprint towards conducting broad- scale meta-analyses, and identify key decision points and potential rationale, we conducted a review of studies that linked remotely sensed data to continuous estimates of burn severity measured with the CBI and related…
Publication Type: Journal Article
Deterioration of air quality associated with the 2020 US wildfires
Year: 2023
The wildfires of August and September 2020 in the western part of the United States were characterized by an unparalleled duration and wide geographical coverage. A particular consequence of massive wildfires includes serious health effects due to short and long-term exposure to poor air quality. Using a variety of data sources including aerosol optical depth (AOD) and ultraviolet aerosol index (UVAI), obtained with the Moderate-Resolution Imaging Spectroradiometer (MODIS), Multi-Angle Implementation of Atmospheric Correction (MAIAC) and Tropospheric Monitoring Instrument (TROPOMI), combined…
Publication Type: Journal Article
A data‐driven analysis and optimization of the impact of prescribed fire programs on wildfire risk in different regions of the USA
Year: 2023
In the current century, wildfires have shown an increasing trend, causing a huge amount of direct and indirect losses in society. Different methods and efforts have been employed to reduce the frequency and intensity of the damages, one of which is implementing prescribed fires. Previous works have established that prescribed fires are effective at reducing the damage caused by wildfires. However, the actual impact of prescribed fire programs is dependent on factors such as where and when prescribed fires are conducted. In this paper, we propose a novel data-driven model studying the impact…
Publication Type: Journal Article
Rethinking the focus on forest fires in federal wildland fire management: Landscape patterns and trends of non-forest and forest burned area
Year: 2023
For most of the 20th century and beyond, national wildland fire policies concerning fire suppression and fuels management have primarily focused on forested lands. Using summary statistics and landscape metrics, wildfire spatial patterns and trends for non-forest and forest burned area over the past two decades were examined across the U.S, and federal agency jurisdictions. This study found that wildfires burned more area of non-forest lands than forest lands at the scale of the conterminous and western U.S. and the Department of Interior (DOI). In an agency comparison, 74% of DOI burned area…
Publication Type: Journal Article
Indigenous Fire Futures
Year: 2023
Dominant causal explanations of the wildfire threat in California include anthropogenic climate change, fire suppression, industrial logging, and the expansion of residential settlements, which are all products of settler colonial property regimes and structures of resource extraction. Settler colonialism is grounded in Indigenous erasure and dispossession through militarism and incarceration, which are prominent tools in California's fire industrial complex. To challenge settler colonial frameworks within fire management, Indigenous peoples are organizing to expand Indigenous cultural…
Publication Type: Journal Article
Using PODs to integrate fire and fuels planning
Year: 2023
BackgroundPotential Wildfire Operational Delineations (PODs) were developed as a pre-season planning tool to promote safe and effective fire response. Past research on PODs has identified uses in an incident management context. There has been little research on how PODs are being utilised in non-incident management contexts to align forest and wildfire planning objectives.AimsWe sought to understand how actors are adopting and adapting the PODs framework to inform non-incident management, and to identify facilitators, barriers and recommendations.…
Publication Type: Journal Article
How Does Fire Suppression Alter the Wildfire Regime? A Systematic Review
Year: 2023
Fire suppression has become a fundamental approach for shaping contemporary wildfire regimes. However, a growing body of research suggests that aggressive fire suppression can increase high-intensity wildfires, creating the wildfire paradox. Whether the strategy always triggers the paradox remains a topic of ongoing debate. The role of fire suppression in altering wildfire regimes in diverse socio-ecological systems and associated research designs demands a deeper understanding. To reconcile these controversies and synthesize the existing knowledge, a systematic review has been conducted to…
Publication Type: Journal Article
Incorporating pyrodiversity into wildlife habitat assessments for rapid post-fire management: A woodpecker case study
Year: 2023
Spatial and temporal variation in fire characteristics—termed pyrodiversity—areincreasingly recognized as important factors that structure wildlife communitiesin fire-prone ecosystems, yet there have been few attempts to incorporatepyrodiversity or post-fire habitat dynamics into predictive models of animaldistributionsandabundancetosupportpost-firemanagement.Weusetheblack-backed woodpecker—a species associated with burned forests—as a case study todemonstrate a pathway for incorporating pyrodiversity into wildlife habitatassessments for adaptive management. Employing monitoring data (2009–…
Publication Type: Journal Article
Metrics and Considerations for Evaluating How Forest Treatments Alter Wildfire Behavior and Effects
Year: 2023
The influence of forest treatments on wildfire effects is challenging to interpret. This is, in part, because the impact forest treatments have on wildfire can be slight and variable across many factors. Effectiveness of a treatment also depends on the metric considered. We present and define human–fire interaction, fire behavior, and ecological metrics of forest treatment effects on wildfire and discuss important considerations and recommendations for evaluating treatments. We demonstrate these concepts using a case study from the Cameron Peak Fire in Colorado, USA. Pre-fire forest…
Publication Type: Journal Article
Drivers of California’s changing wildfires: a state-of-the-knowledge synthesis
Year: 2023
Over the past four decades, annual area burned has increased significantly in California and across the western USA. This trend reflects a confluence of intersecting factors that affect wildfire regimes. It is correlated with increasing temperatures and atmospheric vapour pressure deficit. Anthropogenic climate change is the driver behind much of this change, in addition to influencing other climate-related factors, such as compression of the winter wet season. These climatic trends and associated increases in fire activity are projected to continue into the future. Additionally, factors…
Publication Type: Journal Article
Exploring and Testing Wildfire Risk Decision-Making in the Face of Deep Uncertainty
Year: 2023
We integrated a mechanistic wildfire simulation system with an agent-based landscape change model to investigate the feedbacks among climate change, population growth, development, landowner decision-making, vegetative succession, and wildfire. Our goal was to develop an adaptable simulation platform for anticipating risk-mitigation tradeoffs in a fire-prone wildland–urban interface (WUI) facing conditions outside the bounds of experience. We describe how five social and ecological system (SES) submodels interact over time and space to generate highly variable alternative futures even within…
Publication Type: Journal Article
Using soil moisture information to better understand and predict wildfire danger: a review of recent developments and outstanding questions
Year: 2023
Soil moisture conditions are represented in fire danger rating systems mainly through simple drought indices based on meteorological variables, even though better sources of soil moisture information are increasingly available. This review summarises a growing body of evidence indicating that greater use of in situ, remotely sensed, and modelled soil moisture information in fire danger rating systems could lead to better estimates of dynamic live and dead herbaceous fuel loads, more accurate live and dead fuel moisture predictions, earlier warning of wildfire danger, and better forecasts of…
Publication Type: Journal Article
Rapid fuel recovery after stand-replacing fire in closed-cone pine forests and implications for short-interval severe reburns
Year: 2023
Accelerating disturbance activity under a warming climate increases the potential for multiple disturbances to overlap and produce compound effects that erode ecosystem resilience — the capacity to experience disturbance without transitioning to an alternative state. A key concern is the potential for amplifying or attenuating feedbacks via interactions among successive, linked disturbance events. Following severe wildfires, fuel limitation is a negative feedback that may reduce the likelihood of subsequent fire. However, the duration of, and pre-fire vegetation effects on fuel limitation…
Publication Type: Journal Article
Projecting live fuel moisture content via deep learning
Year: 2023
Background: Live fuel moisture content (LFMC) is a key environmental indicator used to monitor for high wildfire risk conditions. Many statistical models have been proposed to predict LFMC from remotely sensed data; however, almost all these estimate current LFMC (nowcasting models). Accurate modelling of LFMC in advance (projection models) would provide wildfire managers with more timely information for assessing and preparing for wildfire risk. Aims: The aim of this study was to investigate the potential for deep learning models to predict LFMC across the continental United States 3 months…
Publication Type: Journal Article
Exploring the impact of airtanker drops on in-stand temperature and relative humidity
Year: 2023
Background. There has been little quantification of the extent and duration of micro- meteorological changes within a forest after airtanker drops of water-based suppressant. It has been speculated that a period of prolonged relative humidity – referred to as a ‘relative humidity (RH) bubble’ – temporarily exists in the canopy understorey post-drop. Aims. We quantify the RH bubble from the drops of five airtankers commonly used by wildland fire management organisations in Canada. Methods. We measured airtankers dropping water, foam concentrates, and gel enhancers in a mature jack pine stand.…
Publication Type: Journal Article
Future regional increases in simultaneous large Western USA wildfires
Year: 2023
Background: Wildfire simultaneity affects the availability and distribution of resources for fire management: multiple small fires require more resources to fight than one large fire does. Aims: The aim of this study was to project the effects of climate change on simultaneous large wildfires in the Western USA, regionalised by administrative divisions used for wildfire management. Methods: We modelled historical wildfire simultaneity as a function of selected fire indexes using generalised linear models trained on observed climate and fire data from 1984 to 2016. We then applied these models…
Publication Type: Journal Article
Optimizing the implementation of a forest fuel break network
Year: 2023
Methods and models to design, prioritize and evaluate fuel break networks have potential application in many fire-prone ecosystems where major increases in fuel management investments are planned in response to growing incidence of wildfires. A key question facing managers is how to scale treatments into manageable project areas that meet operational and administrative constraints, and then prioritize their implementation over time to maximize fire management outcomes. We developed and tested a spatial modeling system to optimize the implementation of a proposed 3,538 km fuel break network…
Economic Impacts of Fire, Fuels and Fuel Treatments, Risk Assessment and Analysis, Social and Community Impacts of Fire
Publication Type: Journal Article
Managed Wildfire: A Research Synthesis and Overview
Year: 2023
All wildfires in the United States are managed, but the strategies used to manage them vary by region and season. “Managed wildfire” is a response strategy to naturally ignited wildfires; it does not prioritize full suppression and allows the fire to fulfill its natural role on the landscape, meeting objectives such as firefighter safety, resource benefit, and community protection. This wildfire management strategy can be effective for reducing tree densities, landscape homogeneity, fuel load continuity, and future fire behavior, while also working to reintroduce fire to fire-prone ecosystems…
Publication Type: Report
Pagination
- First page
- Previous page
- …
- 3
- 4
- 5
- 6
- 7
- …
- Next page
- Last page