Research Database
Displaying 21 - 40 of 62
Washington State 2020 Forest Action Plan
Year: 2020
Washington has more than 22 million acres of forestland. From the lush rainforests on our coasts, to the rugged sub-alpine forests along the Cascade Crest, to the pine-dominated hillsides surrounding the Columbia Plateau, forests are an integral part of our landscapes and communities, and they provide a wealth of benefits to Washingtonians and the planet. They provide us with sustainable timber and jobs, produce clean air and water, sequester carbon, and support world-class outdoor recreation. Our forests, however, face unprecedented threats that require bold action. Climate change is…
Publication Type: Government Report
Expansion of the invasive European mistetoe in California, USA
Year: 2020
The horticulturist Luther Burbank introduced the European mistletoe (Viscum album L.) to Sebastopol, Sonoma County, California, USA, around 1900 to grow as a Christmas ornament crop and tincture for medicinal use. The mistletoe has since spread from the point of introduction on apple to other hardwood trees, especially non-native hardwoods in yards and farms of the region. Mistletoe surveys were previously conducted in 1971,1986, and 1991. We re-surveyed the region in 2019, with emphasis on the 1991 perimeter, and documented the current farthest distribution of V. album. This represents a 120…
Publication Type: Journal Article
Transformation of western hemlock (Tsuga heterophylla) tree crowns by dwarf mistletoe (Arceuthobium tsugense, Viscaceae)
Year: 2020
Dwarf mistletoes (Arceuthobium species) are arboreal, hemiparasitic plants of conifers that can change the structure and function of the tree crown. Hemlock dwarf mistletoe (Arceuthobium tsugense subsp. tsugense) principally parasitizes western hemlock (Tsuga heterophylla) and effects 10.8% of all western hemlock trees in Oregon, USA. In this study, we climbed 16 western hemlock trees (age 97–321 years, height 33–54.7 m) across a gradient of infection (0%–100% of branches infected) and measured occurrence of all dwarf mistletoe infections, dwarf mistletoe caused deformities, foliage, branch…
Publication Type: Journal Article
Wildfire and topography impacts on snow accumulation and retention in montane forests
Year: 2018
Wildfires are increasing in frequency, severity, and size in many parts of the world. Forest fires can fundamentally affect snowpack and watershed hydrology by restructuring forest composition and structure. Topography is an important factor in snowpack accumulation and ablation as it influences exposure to solar radiation and atmospheric conditions. Few direct measurements of post-fire snowpack have been taken and none to this date that evaluate how topographical aspect influences the effect of forest fire on snowpack accumulation and ablation. We set up a two-year experiment on the…
Publication Type: Journal Article
Pyro-Ecophysiology: Shifting the Paradigm of Live Wildland Fuel Research
Year: 2018
The most destructive wildland fires occur in mixtures of living and dead vegetation, yet very little attention has been given to the fundamental differences between factors that control their flammability. Historically, moisture content has been used to evaluate the relative flammability of live and dead fuels without considering major, unreported differences in the factors that control their variations across seasons and years. Physiological changes at both the leaf and whole plant level have the potential to explain ignition and fire behavior phenomena in live fuels that have been poorly…
Publication Type: Journal Article
Potential effects of climate change on riparian areas, wetlands, and groundwater-dependent ecosystems in the Blue Mountains, Oregon, USA
Year: 2018
Riparian areas, wetlands, and groundwater-dependent ecosystems, which are found at all elevations throughout the Blue Mountains, comprise a small portion of the landscape but have high conservation value because they provide habitat for diverse flora and fauna. The effects of climate change on these special habitats may be especially profound, due to altered snowpack and hydrologic regimes predicted to occur in the near future. The functionality of many riparian areas is currently compromised by water diversions and livestock grazing, which reduces their resilience to additional stresses that…
Publication Type: Journal Article
Decreasing fire season precipitation increased recent western US forest wildfire activity
Year: 2018
Western United States wildfire increases have been generally attributed to warming temperatures, either through effects on winter snowpack or summer evaporation. However, near-surface air temperature and evaporative demand are strongly influenced by moisture availability and these interactions and their role in regulating fire activity have never been fully explored. Here we show that previously unnoted declines in summer precipitation from 1979 to 2016 across 31–45% of the forested areas in the western United States are strongly associated with burned area variations. The number of wetting…
Publication Type: Journal Article
Wildfires managed for restoration enhance ecological resilience
Year: 2018
Expanding the footprint of natural fire has been proposed as one potential solution to increase the pace of forest restoration programs in fire‐adapted landscapes of the western USA. However, studies that examine the long‐term socio‐ecological trade‐offs of expanding natural fire to reduce wildfire risk and create fire resilient landscapes are lacking. We used the model Envision to examine the outcomes that might result from increased area burned by what we call “restoration” wildfire in a landscape where the ecological benefits of wildfire are known, but the need to suppress high‐risk fires…
Publication Type: Journal Article
Disequilibrium of fire-prone forests sets the stage for a rapid decline in conifer dominance during the 21st century
Year: 2018
The impacts of climatic changes on forests may appear gradually on time scales of years to centuries due to the long generation times of trees. Consequently, current forest extent may not reflect current climatic patterns. In contrast with these lagged responses, abrupt transitions in forests under climate change may occur in environments where alternative vegetation states are influenced by disturbances, such as fire. The Klamath forest landscape (northern California and southwest Oregon, USA) is currently dominated by high biomass, biodiverse temperate coniferous forests, but climate change…
Publication Type: Journal Article
Wildfire smoke cools summer river and stream water temperatures
Year: 2018
To test the hypothesis that wildfire smoke can cool summer river and stream water temperatures by attenuating solar radiation and air temperature, we analyzed data on summer wildfire smoke, solar radiation, air temperatures, precipitation, river discharge, and water temperatures in the lower Klamath River Basin in Northern California. Previous studies have focused on the effect of combustion heat on water temperatures during fires and the effect of riparian vegetation losses on postfire water temperatures, but we know of no studies of the effects of wildfire smoke on river or stream water…
Publication Type: Journal Article
Regional patterns of postwildfire streamflow response in the Western United States: The importance of scale-specific connectivity
Year: 2017
Wildfires can impact streamflow by modifying net precipitation, infiltration, evapotranspiration, snowmelt, and hillslope run-off pathways. Regional differences in fire trends and postwildfire streamflow responses across the conterminous United States have spurred concerns about the impact on streamflow in forests that serve as water resource areas. This is notably the case for the Western United States, where fire activity and burn severity have increased in conjunction with climate change and increased forest density due to human fire suppression. In this review, we discuss the effects of…
Publication Type: Journal Article
Return on investment from fuel treatments to reduce severe wildfire and erosion in a watershed investment program in Colorado
Year: 2017
A small but growing number of watershed investment programs in the western United States focus on wildfire risk reduction to municipal water supplies. This paper used return on investment (ROI) analysis to quantify how the amounts and placement of fuel treatment interventions would reduce sediment loading to the Strontia Springs Reservoir in the Upper South Platte River watershed southwest of Denver, Colorado following an extreme fire event. We simulated various extents of fuel mitigation activities under two placement strategies: (a) a strategic treatment prioritization map and (b)…
Publication Type: Journal Article
Assessment of wildland fire impacts on watershed annual water yield: Analytical framework and case studies in the United States
Year: 2016
More than 50% of water supplies in the conterminous United States originate on forestland or rangeland, and are potentially under increasing stress as a result of larger and more severe wildfires. Little is known however about the long-term impacts of fire on annual water yield, and the role of climate variability within this context. We here propose a framework for evaluating wildland fire impacts on streamflow that combines double-mass analysis with new methods (change point analysis, climate elasticity modeling, and process-based modeling) to distinguish between multi-year fire and climate…
Publication Type: Journal Article
Managed wildfire effects on forest resilience and water in the Sierra Nevada
Year: 2016
Fire suppression in many dry forest types has left a legacy of dense, homogeneous forests. Such landscapes have high water demands and fuel loads, and when burned can result in catastrophically large fires. These characteristics are undesirable in the face of projected warming and drying in the western US. Alternative forest and fire treatments based on managed wildfire—a regime in which fires are allowed to burn naturally and only suppressed under defined management conditions—offer a potential strategy to ameliorate the effects of fire suppression. Understanding the long-term effects of…
Publication Type: Journal Article
Temperate forest health in an era of emerging megadisturbance
Year: 2015
Although disturbances such as fire and native insects can contribute to natural dynamics of forest health, exceptional droughts, directly and in combination with other disturbance factors, are pushing some temperate forests beyond thresholds of sustainability. Interactions from increasing temperatures, drought, native insects and pathogens, and uncharacteristically severe wildfire are resulting in forest mortality beyond the levels of 20th-century experience. Additional anthropogenic stressors, such as atmospheric pollution and invasive species, further weaken trees in some regions. Although…
Publication Type: Journal Article
Does wildfire likelihood increase following insect outbreaks in conifer forests?
Year: 2015
Although there is acute concern that insect-caused tree mortality increases the likelihood or severity of subsequent wildfire, previous studies have been mixed, with findings typically based on stand-scale simulations or individual events. This study investigates landscape- and regional-scale wildfire likelihood following outbreaks of the two most prevalent native insect pests in the US Pacific Northwest (PNW): mountain pine beetle (MPB; Dendroctonus ponderosae) and western spruce budworm (WSB; Choristoneura freemani). We leverage seamless census data across numerous insect and fire events to…
Publication Type: Journal Article
Relations between soil hydraulic properties and burn severity
Year: 2015
Wildfire can affect soil hydraulic properties, often resulting in reduced infiltration. The magnitude of change in infiltration varies depending on the burn severity. Quantitative approaches to link burn severity with changes in infiltration are lacking. This study uses controlled laboratory measurements to determine relations between a remotely sensed burn severity metric (dNBR, change in normalised burn ratio) and soil hydraulic properties (SHPs). SHPs were measured on soil cores collected from an area burned by the 2013 Black Forest fire in Colorado, USA. Six sites with the same soil type…
Publication Type: Journal Article
Western Water Threatened by Wildfire: It's Not Just A Public Lands Issue
Year: 2015
Water is the arid West’s most precious and most vulnerable resource. Western water allows metropolises to bloom in the desert, it fuels America’s largest agricultural economy and it supports a ski industry worth more than $6 billion to state and local economies (Burakowski and Magnusson, 2012). The delivery of clean and abundant water is extremely sensitive to disaster, whether natural or man-made. As years-long drought conditions across the region reinforce, the water quantity and quality in the West is never certain.
Publication Type: Report
Western Spruce Budworm Outbreaks Did Not Increase Fire Risk Over the Last Three Centuries: A Dendrochronological Analysis of Inter-Disturbance Synergism
Year: 2014
Insect outbreaks are often assumed to increase the severity or probability of fire occurrence through increased fuel availability, while fires may in turn alter susceptibility of forests to subsequent insect outbreaks through changes in the spatial distribution of suitable host trees. However, little is actually known about the potential synergisms between these natural disturbances. Assessing inter-disturbance synergism is challenging due to the short length of historical records and the confounding influences of land use and climate changes on natural disturbance dynamics. We used…
Publication Type: Journal Article
Wildfire and the Future of Water Supply
Year: 2014
In many parts of the world, forests provide high quality water for domestic, agricultural, industrial, and ecological needs, with water supplies in those regions inextricably linked to forest health. Wildfires have the potential to have devastating effects on aquatic ecosystems and community drinking water supply through impacts on water quantity and quality. In recent decades, a combination of fuel load accumulation, climate change, extensive droughts, and increased human presence in forests have resulted in increases in area burned and wildfire severity—a trend predicted to continue. Thus,…
Publication Type: Journal Article