Research Database
Displaying 21 - 40 of 49
Pyrogenic carbon decomposition critical to resolving fire’s role in the Earth system
Year: 2022
Recently identified post-fire carbon fluxes indicate that, to understand whether global fires represent a net carbon source or sink, one must consider both terrestrial carbon retention through pyrogenic carbon production and carbon losses via multiple pathways. Here these legacy source and sink pathways are quantified using a CMIP6 land surface model to estimate Earth’s fire carbon budget. Over the period 1901–2010, global pyrogenic carbon has driven an annual soil carbon accumulation of 337 TgC yr−1, offset by legacy carbon losses totalling −248 TgC yr−1. The residual of these values…
Publication Type: Journal Article
Future climate risks from stress, insects and fire across US forests
Year: 2022
Forests are currently a substantial carbon sink globally. Many climate change mitigation strategies leverage forest preservation and expansion, but rely on forests storing carbon for decades to centuries. Yet climate-driven disturbances pose critical risks to the long-term stability of forest carbon. We quantify the climate drivers that influence wildfire and climate stress-driven tree mortality, including a separate insect-driven tree mortality, for the contiguous United States for current (1984–2018) and project these future disturbance risks over the 21st century. We find that current…
Publication Type: Journal Article
Increasing co-occurrence of fine particulate matter and ground-level ozone extremes in the western United States
Year: 2022
Wildfires and meteorological conditions influence the co-occurrence of multiple harmful air pollutants including fine particulate matter (PM2.5) and ground-level ozone. We examine the spatiotemporal characteristics of PM2.5/ ozone co-occurrences and associated population exposure in the western United States (US). The frequency, spatial extent, and temporal persistence of extreme PM2.5/ozone co-occurrences have increased significantly between 2001 and 2020, increasing annual population exposure to multiple harmful air pollutants by ~25 million person-days/year. Using a clustering methodology…
Publication Type: Journal Article
Tamm review: The effects of prescribed fire on wildfire regimes and impacts: A framework for comparison
Year: 2020
Prescribed fire can result in significant benefits to ecosystems and society. Examples include improved wildlifehabitat, enhanced biodiversity, reduced threat of destructive wildfire, and enhanced ecosystem resilience.Prescribed fire can also come with costs, such as reduced air quality and impacts to fire sensitive species. To planfor appropriate use of prescribed fire, managers need information on the tradeoffs between prescribed fire andwildfire regimes. In this study, we argue that information on tradeoffs should be presented at spatial andtemporal scales commensurate with the scales at…
Publication Type: Journal Article
Effects of season and interval of prescribed burns on pyrogenic carbon in ponderosa pine stands in the southern Blue Mountains, Oregon, USA
Year: 2019
In ponderosa pine (Pinus ponderosa) forests of the western United States, prescribed burns are used to reduce fuel loads and restore historical fire regimes. The season of and interval between burns can have complex consequences for the ecosystem, including the production of pyrogenic carbon (PyC). PyC plays a crucial role in soil carbon cycling, displaying turnover times that are orders of magnitude longer than unburned organic matter. This work investigated how the season of and interval between prescribed burns affects soil organic matter, including the formation and retention of PyC, in a…
Publication Type: Journal Article
The influence of fire history on soil nutrients and vegetation cover in mixed-severity fire regime forests of the eastern Olympic Peninsula, Washington, USA
Year: 2018
The rain shadow forests of the Olympic Peninsula exemplify a mixed-severity fire regime class in the midst of a highly productive landscape where spatial heterogeneity of fire severity may have significant implications for below and aboveground post-fire recovery. The purpose of this study was to quantify the impacts of wildfire on forest soil carbon (C) and nitrogen (N) pools and assess the relationship of pyrogenic carbon (PyC) to soil processes in this mixed-severity ecosystem. We established a 112-year fire chronosequence with nine similar forest stands ranging in time since lastfire (TSF…
Publication Type: Journal Article
Emissions from prescribed burning of timber slash piles in Oregon
Year: 2017
Emissions from burning piles of post-harvest timber slash (Douglas-fir) in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5), black carbon, ultraviolet absorbing PM, elemental/organic carbon, filter-based metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzodioxins/dibenzofurans (PCDD/PCDF), and volatile organic compounds (VOCs) were sampled to determine emission factors, the amount of pollutant formed per amount…
Publication Type: Journal Article
Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests
Year: 2016
Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and any potential carbon benefits from treatment may depend on the occurrence of wildfire. We sought to determine how forest treatments alter the effects of stochastic wildfire events on the forest carbon balance. We modeled three…
Publication Type: Journal Article
Burning the legacy? Influence of wildfire reburn on dead wood dynamics in a temperate conifer forest
Year: 2016
Dynamics of dead wood, a key component of forest structure, are not well described for mixed- severity fi re regimes with widely varying fi re intervals. A prominent form of such variation is when two stand- replacing fi res occur in rapid succession, commonly termed an early- seral “reburn.” These events are thought to strongly infl uence dead wood abundance in a regenerating forest, but this hypothesis has scarcely been tested. We measured dead wood following two overlapping wildfi res in coniferdominated forests of the Klamath Mountains, Oregon (USA), to assess whether reburning (15- yr…
Publication Type: Journal Article
Forest management scenarios in a changing climate: trade-offs between carbon, timber, and old forest
Year: 2016
Balancing economic, ecological, and social values has long been a challenge in the forests of the Pacific Northwest, where conflict over timber harvest and old-growth habitat on public lands has been contentious for the past several decades. The Northwest Forest Plan, adopted two decades ago to guide management on federal lands, is currently being revised as the region searches for a balance between sustainable timber yields and habitat for sensitive species. In addition, climate change imposes a high degree of uncertainty on future forest productivity, sustainability of timber harvest,…
Publication Type: Journal Article
Effects of harvest, fire, and pest/pathogen disturbances on the West Cascades ecoregion carbon balance
Year: 2015
Disturbance is a key influence on forest carbon dynamics, but the complexity of spatial and temporal patterns in forest disturbance makes it difficult to quantify their impacts on carbon flux over broad spatial domains.Here we used a time series of Landsat remote sensing images and a climate-driven carbon cycle process model to evaluate carbon fluxes at the ecoregion scale in western Oregon.
Publication Type: Journal Article
Mapping the daily progression of large wildland fires using MODIS active fire data
Year: 2014
High temporal resolution information on burnt area is needed to improve fire behaviour and emissions models. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly and active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the timing of burnt area for 16 large wildland fires. For each fire, parameters for the kriging model were defined using variogram analysis. The optimal number of observations used to estimate a pixel’s time of burning varied between four and six among the fires studied. The median standard error from…
Publication Type: Journal Article
Wildland fire emissions, carbon, and climate: Modeling fuel consumption
Year: 2014
Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic process that leads to heat absorbing emissions called greenhouse gas and other aerosol emissions that can impact atmospheric and ecosystem processes, carbon stocks, and land surface reflectance. It is a critical requirement for…
Publication Type: Journal Article
The relationship of post-fire white ash cover to surface fuel consumption
Year: 2013
White ash results from the complete combustion of surface fuels, making it a logically simple retrospective indicator of surface fuel consumption. However, the strength of this relationship has been neither tested nor adequately demonstrated with field measurements. We measured surface fuel loads and cover fractions of white ash and four other surface materials (green vegetation, brown non-photosynthetic vegetation, black char and mineral soil) immediately before and after eight prescribed fires in four disparate fuelbed types: boreal forest floor, mixed conifer woody slash, mixed conifer…
Publication Type: Journal Article
Do carbon offsets work? The role of forest management in greenhouse gas mitigation
Year: 2013
Publication Type: Report
Fuel treatment impacts on estimated wildfire carbon loss from forests in Montana, Oregon, California, and Arizona
Year: 2012
Using forests to sequester carbon in response to anthropogenically induced climate change is being considered across the globe. A recent U.S. executive order mandated that all federal agencies account for sequestration and emissions of greenhouse gases, highlighting the importance of understanding how forest carbon stocks are influenced by wildfire. This paper reports the effects of the most common forest fuel reduction treatments on carbon pools composed of live and dead biomass as well as potential wildfire emissions from six different sites in four western U.S. states. Additionally, we…
Publication Type: Journal Article
Forest Protection and Forest Harvest as Strategies for Ecological Sustainability and Climate Change Mitigation
Year: 2012
An important consideration in forest management to mitigate climate change is the balance between forest carbon (C) storage and ecological sustainability. We explore the effects of management strategies on tradeoffs between forest C stocks and ecological sustainability under five scenarios, three of which included management and two scenarios which provide baselines emulating the natural forest. Managed forest scenarios were: (a) Protection (PROT), i.e., management by suppression of natural disturbance and harvest exclusion; (b) Harvest at a higher rate removing all sustainably available wood…
Publication Type: Journal Article
Carbon Outcomes from Fuels Treatment and Bioenergy Production in a Sierra Nevada Forest
Year: 2012
In temperate conifer forests of the Western USA, there is active debate whether fuels reduction treatments and bioenergy production result in decreased carbon emissions and increased carbon sequestration compared to a no-action alternative. To address this debate over net carbon stocks, we performed a carbon life-cycle analysis on data from a fuels reduction treatment in a temperate, dry conifer forest in the northern Sierra Nevada of California, USA. The analysis tracks the net ecosystem carbon balance over 50 years for two scenarios (1) fuels reduction treatment combined with bioenergy…
Publication Type: Journal Article
Estimating Consumption and Remaining Carbon in Burned Slash Piles
Year: 2012
Fuel reduction treatments to reduce fire risk have become commonplace in the fire adapted forests of western North America. These treatments generate significant woody debris, or slash, and burning this material in piles is a common and inexpensive approach to reducing fuel loads. Although slash pile burning is a common practice, there is little information on consumption or even a common methodology for estimating consumption. As considerations of carbon storage and emissions from forests increase, better means of quantifying burn piles are necessary. This study uses two methods, sector…
Publication Type: Journal Article
Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition Under Elevated CO2
Year: 2012
The extent to which terrestrial ecosystems can sequester carbon to mitigate climate change is a matter of debate. The stimulation of arbuscular mycorrhizal fungi (AMF) by elevated atmospheric carbon dioxide (CO 2 ) has been assumed to be a major mechanism facilitating soil carbon sequestration by increasing carbon inputs to soil and by protecting organic carbon from decomposition via aggregation. We present evidence from four independent microcosm and field experiments demonstrating that CO 2 enhancement of AMF results in considerable soil carbon losses. Our findings challenge the assumption…
Publication Type: Journal Article