Research Database
Displaying 1 - 20 of 69
Mobile radar provides insights into hydrologic responses in burn areas
Year: 2025
Background. Wildfires often occur in mountainous terrain, regions that pose substantial challenges to operational meteorological and hydrologic observing networks. Aims. A mobile, postfire hydrometeorological observatory comprising remote-sensing and in situ instrumentation was developed and deployed in a burnt area to provide unique insights into rainfall-induced post-fire hazards. Methods. Mobile radar-based rainfall estimates were produced throughout the burn area at 75-m resolution and compared with rain gauge accumulations and basin response variables. Key results. The mobile radar was…
Publication Type: Journal Article
Lightning ignition efficiency in Canadian forests
Year: 2025
Background: Lightning-caused fires have a driving influence on Canadian forests, being responsible for approximately half of all wildfires and 90% of the area burned. We created a climatology (2000–2020) of daily lightning efficiency (i.e., the ratio of cloud-to-ground lightning flashes to lightning-caused wildfires that occurred) over the meteorological summer for four ecozones and a subset of British Columbia (BC) ecoprovinces. We estimated lightning efficiency using data from the Canadian Lightning Detection Network and the Canadian National Fire Database. We used the ERA5…
Publication Type: Journal Article
Climate Change Contributions to US Wildfire Smoke PM2.5 Mortality Between 2006-2020
Year: 2025
RATIONALE Wildfires have increased in frequency and intensity due to climate change and now contribute to nearly half of the annual average of fine particulate matter in the US. While the effects of short-term wildfire-PM2.5 exposure on respiratory diseases are well-described, the impact of climate change on longer duration wildfire-PM2.5 mortality is unknown. Our aim was to determine the contribution of anthropogenic climate change to wildfire smoke PM2.5 mortality on a county-level across the conterminous US between 2006-2020. METHODS We use an attribution model to compare observed wildfire…
Publication Type: Journal Article
Wildfire and forest treatments mitigate–but cannot forestall–climate-driven changes in streamflow regimes in a western US mountain landscape
Year: 2025
Warming temperatures and increasingly variable precipitation patterns are reducing winter snowpack and critical late-season streamflows. Here, we used two models (LANDIS-II and DHSVM) in linked simulations to evaluate the effects of wildfire and forest management scenarios on future snowpack and streamflow dynamics. We characterized the biophysical attributes of the areas with the greatest potential for treatments to improve hydrologic functioning and we examined projected trends in flow regimes over the 21st century. We found that, despite a projected increase in total annual flows, there…
Publication Type: Journal Article
Influence of Time‐Averaging of Climate Data on Estimates of Atmospheric Vapor Pressure Deficit and Inferred Relationships With Wildfire Area in the Western United States
Year: 2025
Vapor pressure deficit (VPD) is a driver of evaporative demand and correlates strongly with wildfire extent in the western United States (WUS). Vapor pressure deficit is the difference between saturation vapor pressure (es) and actual vapor pressure (ea). Because es increases nonlinearly with temperature, calculations of time‐averaged VPD vary depending on the frequency of temperature measurements and how ea is calculated, potentially limiting our understanding of fire‐climate relationships. We calculate eight versions of monthly VPD across the WUS and assess their differences. Monthly VPDs…
Publication Type: Journal Article
Fire Intensity and spRead forecAst (FIRA): A Machine Learning Based Fire Spread Prediction Model for Air Quality Forecasting Application
Year: 2025
Fire activities introduce hazardous impacts on the environment and public health by emitting various chemical species into the atmosphere. Most operational air quality forecast (AQF) models estimate smoke emissions based on the latest available satellite fire products, which may not represent real-time fire behaviors without considering fire spread. Hence, a novel machine learning (ML) based fire spread forecast model, the Fire Intensity and spRead forecAst (FIRA), is developed for AQF model applications. FIRA aims to improve the performance of AQF models by providing realistic, dynamic fire…
Publication Type: Journal Article
A Quantitative Analysis of Firefighter Availability and Prescribed Burning in the Okanogan–Wenatchee National Forest
Year: 2025
Wildfire activity in the western United States has been on the rise since the mid-1980s, with longer, higher-risk fire seasons projected for the future. Prescribed burning mitigates the risk of extreme wildfire events, but such treatments are currently underutilized. Fire managers have cited lack of firefighter availability as a key barrier to prescribed burning. We use both principal component analysis (PCA) and logistic regression modeling methodologies to investigate whether or not (and if yes, under what conditions) personnel shortages on a given day are associated with lower odds of a…
Publication Type: Journal Article
Increasing Hydroclimatic Whiplash Can Amplify Wildfire Risk in a Warming Climate
Year: 2025
On January 7 and 8, 2025, a series of wind-driven wildfires occurred in Los Angeles County in Southern California. Two of these fires ignited in dense woody chaparral shrubland and immediately burned into adjacent populated areas–the Palisades Fire on the coastal slopes of the Santa Monica Mountains and the Eaton fire in the foothills of the San Gabriel Mountains. Both fires ultimately eclipsed the traditionally-defined “wildland-urban interface” boundaries by burning structure-to-structure as an urban conflagration. The scope of the devastation is staggering; at the time of writing, the…
Publication Type: Report
Decreasing frequency of low and moderate fire weather days may be contributing to large wildfire occurrence in the northern Sierra Nevada
Year: 2025
Previous analyses identified large-scale climatic patterns contributing to greater fuel aridity as drivers of recent dramatic increases in wildfire activity throughout California. This study revisits an approach to investigate more local fire weather patterns in the northern Sierra Nevada; a region within California that has experienced exceptionally high wildfire activity recently. The annual percentages of fire season days above 90th and 95th percentile Energy Release Component (ERC) values were very low prior to 1994 (Fig. 3). Since 1994, years with noticeable percentages of exceedances (…
Publication Type: Journal Article
Bacterial Emission Factors: A Foundation for the Terrestrial-Atmospheric Modeling of Bacteria Aerosolized by Wildland Fires
Year: 2024
Wildland fire is a major global driver in the exchange of aerosols between terrestrial environments and the atmosphere. This exchange is commonly quantified using emission factors or the mass of a pollutant emitted per mass of fuel burned. However, emission factors for microbes aerosolized by fire have yet to be determined. Using bacterial cell concentrations collected on unmanned aircraft systems over forest fires in Utah, USA, we determine bacterial emission factors (BEFs) for the first time. We estimate that 1.39 × 1010 and 7.68 × 1011 microbes are emitted for each Mg of biomass consumed…
Publication Type: Journal Article
Drought triggers and sustains overnight fires in North America
Year: 2024
Overnight fires are emerging in North America with previously unknown drivers and implications. This notable phenomenon challenges the traditional understanding of the ‘active day, quiet night’ model of the diurnal fire cycle1,2,3 and current fire management practices4,…
Publication Type: Journal Article
Hydrometeorology-wildfire relationship analysis based on a wildfire bivariate probabilistic framework in different ecoregions of the continental United States
Year: 2024
Wildfires are a natural part of the ecosystem in the U.S.. It is vital to classify wildfires using a comprehensive approach that simultaneously considers wildfire activity (the number of wildfires) and burned area. On this basis, the influence of hydrometeorological variables on wildfires can be further analyzed. Therefore, this study first classified wildfire types using a wildfire bivariate probability framework. Then, by considering six hydrometeorological variables, the dominant hydrometeorological variables for different wildfire types in 17 ecoregions of the United States were…
Publication Type: Journal Article
Global rise in forest fire emissions linked to climate change in the extratropics
Year: 2024
Climate change increases fire-favorable weather in forests, but fire trends are also affected by multiple other controlling factors that are difficult to untangle. We use machine learning to systematically group forest ecoregions into 12 global forest pyromes, with each showing distinct sensitivities to climatic, human, and vegetation controls. This delineation revealed that rapidly increasing forest fire emissions in extratropical pyromes, linked to climate change, offset declining emissions in tropical pyromes during 2001 to 2023. Annual emissions tripled in one extratropical pyrome due to…
Publication Type: Journal Article
Comparing ground-based lightning detection networks near wildfire points-of-origin
Year: 2024
Lightning detection and attribution to wildfire ignitions is a critical component of fire management worldwide to both reduce hazards of wildfire to values-at-risk and to enhance the potential for wildland fire to provide resource benefits in fire-adapted ecosystems. We compared two operational ground-based lightning detection networks used by fire managers to identify cloud-to-ground strokes within operationally-relevant distances (1.6 km) of the origins of 4408 western United States lightning-ignited wildfires spanning May–September 2020. Applying two sets of constraints–varying…
Publication Type: Journal Article
Moderating effects of past wildfire on reburn severity depend on climate and initial severity in Western US forests
Year: 2024
Rising global fire activity is increasing the prevalence of repeated short-interval burning (reburning) in forests worldwide. In forests that historically experienced frequent-fire regimes, high-severity fire exacerbates the severity of subsequent fires by increasing prevalence of shrubs and/or by creating drier understory conditions. Low- to moderate-severity fire, in contrast, can moderate future fire behavior by reducing fuel loads. The extent to which previous fires moderate future fire severity will powerfully affect fire-prone forest ecosystem trajectories over the next century. Further…
Publication Type: Journal Article
Application of the wildland fire emissions inventory system to estimate fire emissions on forest lands of the United States
Year: 2024
BackgroundForests are significant terrestrial biomes for carbon storage, and annual carbon accumulation of forest biomass contributes offsets affecting net greenhouse gases in the atmosphere. The immediate loss of stored carbon through fire on forest lands reduces the annual offsets provided by forests. As such, the United States reporting includes annual estimates of direct fire emissions in conjunction with the overall forest stock and change estimates as a part of national greenhouse gas inventories within the United Nations Framework Convention on Climate Change. Forest fire emissions…
Publication Type: Journal Article
Near-term fire weather forecasting in the Pacific Northwest using 500-hPa map types
Year: 2024
BackgroundNear-term forecasts of fire danger based on predicted surface weather and fuel dryness are widely used to support the decisions of wildfire managers. The incorporation of synoptic-scale upper-air patterns into predictive models may provide additional value in operational forecasting.AimsIn this study, we assess the impact of synoptic-scale upper-air patterns on the occurrence of large wildfires and widespread fire outbreaks in the US Pacific Northwest. Additionally, we examine how discrete upper-air map types can augment subregional models of…
Publication Type: Journal Article
Forest thinning and prescribed burning treatments reduce wildfire severity and buffer the impacts of severe fire weather
Year: 2024
BackgroundThe capacity of forest fuel treatments to moderate the behavior and severity of subsequent wildfires depends on weather and fuel conditions at the time of burning. However, in-depth evaluations of how treatments perform are limited because encounters between wildfires and areas with extensive pre-fire data are rare. Here, we took advantage of a 1200-ha randomized and replicated experiment that burned almost entirely in a subsequent wildfire under a wide range of weather conditions. We compared the impacts of four fuel treatments on fire severity, including two thin-only, a thin-burn…
Publication Type: Journal Article
The Interannual Variability of Global Burned Area Is Mostly Explained by Climatic Drivers
Year: 2024
Better understanding how fires respond to climate variability is an issue of current interest in light of ongoing climate change. However, evaluating the global-scale temporal variability of fires in response to climate presents a challenge due to the intricate processes at play and the limitation of fire data. Here, we investigate the links between year-to-year variability of burned area (BA) and climate using BA data, the Fire Weather Index (FWI), and the Standardized Precipitation Evapotranspiration Index (SPEI) from 2001 to 2021 at ecoregion scales. Our results reveal complex spatial…
Publication Type: Journal Article
Generating fuel consumption maps on prescribed fire experiments from airborne laser scanning
Year: 2024
Background. Characterisation of fuel consumption provides critical insights into fire behaviour, effects, and emissions. Stand-replacing prescribed fire experiments in central Utah offered an opportunity to generate consumption estimates in coordination with other research efforts. Aims. We sought to generate fuel consumption maps using pre- and post-fire airborne laser scanning (ALS) and ground measurements and to test the spatial transferability of the ALSderived fuel models. Methods. Using random forest (RF), we empirically modelled fuel load and estimated consumption from pre-…
Publication Type: Journal Article