Research Database
Displaying 21 - 40 of 81
Human driven climate change increased the likelihood of the 2023 record area burned in Canada
Year: 2024
In 2023, wildfires burned 15 million hectares in Canada, more than doubling the previous record. These wildfires caused a record number of evacuations, unprecedented air quality impacts across Canada and the northeastern United States, and substantial strain on fire management resources. Using climate models, we show that human-induced climate change significantly increased the likelihood of area burned at least as large as in 2023 across most of Canada, with more than two-fold increases in the east and southwest. The long fire season was more than five times as likely and the large areas…
Publication Type: Journal Article
Before the fire: predicting burn severity and potential post-fire debris-flow hazards to conservation populations of the Colorado River Cutthroat Trout (Oncorhynchus clarkii pleuriticus)
Year: 2024
Background: Colorado River Cutthroat Trout (CRCT; Oncorhynchus clarkii pleuriticus) conservation populations may be at risk from wildfire and post-fire debris flows hazards. Aim: To predict burn severity and potential post-fire debris flow hazard classifications to CRCT conservation populations before wildfires occur. Methods: We used remote sensing, spatial analyses, and machine learning to model 28 wildfire incidents (2016–2020) and spatially predict burn severity from pre-wildfire environmental factors to evaluate the likelihood…
Publication Type: Journal Article
Forest thinning and prescribed burning treatments reduce wildfire severity and buffer the impacts of severe fire weather
Year: 2024
BackgroundThe capacity of forest fuel treatments to moderate the behavior and severity of subsequent wildfires depends on weather and fuel conditions at the time of burning. However, in-depth evaluations of how treatments perform are limited because encounters between wildfires and areas with extensive pre-fire data are rare. Here, we took advantage of a 1200-ha randomized and replicated experiment that burned almost entirely in a subsequent wildfire under a wide range of weather conditions. We compared the impacts of four fuel treatments on fire severity, including two thin-only, a thin-burn…
Publication Type: Journal Article
The Interannual Variability of Global Burned Area Is Mostly Explained by Climatic Drivers
Year: 2024
Better understanding how fires respond to climate variability is an issue of current interest in light of ongoing climate change. However, evaluating the global-scale temporal variability of fires in response to climate presents a challenge due to the intricate processes at play and the limitation of fire data. Here, we investigate the links between year-to-year variability of burned area (BA) and climate using BA data, the Fire Weather Index (FWI), and the Standardized Precipitation Evapotranspiration Index (SPEI) from 2001 to 2021 at ecoregion scales. Our results reveal complex spatial…
Publication Type: Journal Article
Record-breaking fire weather in North America in 2021 was initiated by the Pacific northwest heat dome
Year: 2024
The 2021 North American wildfire season was marked by record breaking fire-conducive weather and widespread synchronous burning, extreme fire behaviour, smoke and evacuations. Relative to 1979–2021, the greatest number of temperature and vapor pressure deficit records were broken in 2021, and in July alone, 3.2 million hectares burned in Canada and the United States. These events were catalyzed by an intense heat dome that formed in late June over western North America that synchronized fire danger, challenging fire suppression efforts. Based on analysis of persistent positive anomalies of…
Publication Type: Journal Article
Association of social vulnerability factors with power outage burden in Washington state: 2018–2021
Year: 2024
Major power outages have risen over the last two decades, largely due to more extreme weather conditions. However, there is a lack of knowledge on the distribution of power outages and its relationship to social vulnerability and co-occurring hazards. We examined the associations between localized outages and social vulnerability factors (demographic characteristics), controlling for environmental factors (weather), in Washington State between 2018–2021. We additionally analyzed the validity of PowerOutage.us data compared to federal datasets. The population included 27 counties served by 14…
Publication Type: Journal Article
Changing fire regimes and nuanced impacts on a critically imperiled species
Year: 2024
Wildfire activity throughout western North America is increasing which can have important consequences for species persistence. Native species have evolved disturbance-adapted traits that confer resilience to natural disturbance provided disturbances operate within their historical range of variability. This resilience can erode as disturbance regimes change and begin operating outside this range. We assessed wildfire impacts during 1987–2018 on the northern spotted owl, an imperiled species with complex relationships with late and early seral forest in the Pacific Northwest, USA. We analyzed…
Publication Type: Journal Article
Trends in prescribed fire weather windows from 2000 to 2022 in California
Year: 2024
As increasing wildfire activity puts pressure on wildland fire suppression resources both nationally and within the state of California, further development of programs and infrastructure that emphasize preventative fuels treatments, e.g. prescribed burning, is critical for mitigating the impacts of wildfire at large spatial scales. Among many factors that limit the use of prescribed fire, weather and fuel moisture conditions are among the most critical. We analyzed a 2-km gridded hourly surface weather dataset over a 23-yr period to explore the relationship between climatological trends and…
Publication Type: Journal Article
Canada Under Fire – Drivers and Impacts of the Record-Breaking 2023 Wildfire Season
Year: 2024
The 2023 wildfire season in Canada was unprecedented in its scale and intensity. Spanning from late April to early November and extending across much of the forested regions of Canada, the season resulted in a record-breaking total area burned of approximately 15 million hectares, over seven times the historic national annual average. The impacts were profound with more than 200 communities evacuated (approximately 232,000 people), periods of dense smoke that caused significant public health concerns, and unprecedented demands on fire-fighting resources. The exceptional area burned can be…
Publication Type: Journal Article
Probabilistic Forecasting of Lightning Strikes over the Continental USA and Alaska: Model Development and Verification
Year: 2024
Lightning is responsible for the most area annually burned by wildfires in the extratropical region of the Northern Hemisphere. Hence, predicting the occurrence of wildfires requires reliable forecasting of the chance of cloud-to-ground lightning strikes during storms. Here, we describe the development and verification of a probabilistic lightning-strike algorithm running on a uniform 20 km grid over the continental USA and Alaska. This is the first and only high-resolution lightning forecasting model for North America derived from 29-year-long data records. The algorithm consists of a large…
Publication Type: Journal Article
Lightning-Ignited Wildfires in the Western United States: Ignition Precipitation and Associated Environmental Conditions
Year: 2023
Cloud-to-ground lightning with minimal rainfall (“dry” lightning) is a major wildfire ignition source in the western United States (WUS). Although dry lightning is commonly defined as occurring with <2.5 mm of daily-accumulated precipitation, a rigorous quantification of precipitation amounts concurrent with lightning-ignited wildfires (LIWs) is lacking. We combine wildfire, lightning and precipitation data sets to quantify these ignition precipitation amounts across ecoprovinces of the WUS. The median precipitation for all LIWs is 2.8 mm but varies with vegetation and fire characteristics…
Publication Type: Journal Article
Landscape‑scale fuel treatment effectiveness: lessons learned from wildland fire case studies in forests of the western United States and Great Lakes region
Year: 2023
Background Maximizing the effectiveness of fuel treatments at landscape scales is a key research and management need given the inability to treat all areas at risk from wildfire. We synthesized information from case studies that documented the influence of fuel treatments on wildfire events. We used a systematic review to identify relevant case studies and extracted information through a series of targeted questions to summarize experiential knowledge of landscape fuel treatment effectiveness. Within a larger literature search, we identified 18 case study reports that included (1) manager…
Publication Type: Journal Article
Smoke-weather interaction affects extreme wildfires in diverse coastal regions
Year: 2023
Extreme wildfires threaten human lives, air quality, and ecosystems. Meteorology plays a vital role in wildfire behaviors, and the links between wildfires and climate have been widely studied. However, it is not fully clear how fire-weather feedback affects short-term wildfire variability, which undermines our ability to mitigate fire disasters. Here, we show the primacy of synoptic- scale feedback in driving extreme fires in Mediterranean and monsoon climate regimes in the West Coast of the United States and Southeastern Asia. We found that radiative effects of smoke aerosols can modify near…
Publication Type: Journal Article
Hydrological and Meteorological Controls on Large Wildfire Ignition and Burned Area in Northern California during 2017–2020
Year: 2023
This study examined the hydrological/meteorological controls on large wildfires > 10,000 acres (40.5 km2) during 2017–2020 in Northern California at spatial and temporal scales of the target wildfires’ occurrence or growth. This study used the following simple indices for analysis: Moisture Deficit Index (MDI) computed by dividing vapor pressure deficit by soil moisture, MDIWIND computed by multiplying MDI by horizontal wind speed, and MDIGUST computed by multiplying MDI by wind gust speed. The ignition location MDIWIND and MDIGUST showed larger values on the ignition date in fire-years…
Publication Type: Journal Article
Dry Live Fuels Increase the Likelihood of Lightning-Caused Fires
Year: 2023
Live fuel moisture content (LFMC) is a key determinant of landscape ignition potential, but quantitative estimates of its effects on wildfire are lacking. We present a causal inference framework to isolate the effect of LFMC from other drivers like fuel type, fuel amount, and meteorology. We show that in California when LFMC is below a critical flammability threshold, the likelihood of fires is 1.8 times as high statewide (2.25% vs. 1.27%) and 2.5 times as high in shrubs, compared to when LFMC is greater than the threshold. This risk ratio is >2 times when LFMC is 10% less than the…
Publication Type: Journal Article
Examining the influence of mid-tropospheric conditions and surface wind changes on extremely large fires and fire growth days
Year: 2023
Background: Previous work by the author and others has examined weather associated with growth of exceptionally large fires (‘Fires of Unusual Size’, or FOUS), looking at three of four factors associated with critical fire weather patterns: antecedent drying, high wind and low humidity. However, the authors did not examine atmospheric stability, the fourth factor. Aims: This study examined the relationships of mid-tropospheric stability and dryness used in the Haines Index, and changes in surface wind speed or direction, to growth of FOUS. Methods. Weather measures were paired with daily…
Publication Type: Journal Article
Summer and Fall Extreme Fire Weather Projected to Occur More Often and Affect a Growing Portion of California throughout the 21st Century
Year: 2022
Annual burned area has increased in California over the past three decades as a result of rising temperatures and a greater atmospheric demand for moisture, a trend that is projected to continue throughout the 21st century as a result of climate change. Here, we implement a bias-correction and statistical downscaling technique to obtain high resolution, daily meteorological conditions for input into two fire weather indices: vapor pressure deficit (VPD) and the Canadian Fire Weather Index System (FWI). We focus our analysis on 10 ecoregions that together account for the diverse range of…
Publication Type: Journal Article
Extreme Winds Alter Influence of Fuels and Topography on Megafire Burn Severity in Seasonal Temperate Rainforests under Record Fuel Aridity
Year: 2022
Nearly 0.8 million hectares of land were burned in the North American Pacific Northwest (PNW) over two weeks under record-breaking fuel aridity and winds during the extraordinary 2020 fire season, representing a rare example of megafires in forests west of the Cascade Mountains. We quantified the relative influence of weather, vegetation, and topography on patterns of high burn severity (>75% tree mortality) among five synchronous megafires in the western Cascade Mountains. Despite the conventional wisdom in climate-limited fire regimes that regional drivers (e.g., extreme aridity, and…
Publication Type: Journal Article
Post-fire Salvage Logging Science Series
Year: 2021
The publications and media in this hot topic address the effects of salvage logging on plants, biodiversity, and cavity-nesting birds. They also cover a range of research that includes, but is not limited to, the ecological impacts of salvage logging; the effects of salvage logging on soil, sediment production, mountain pine beetles, and riparian systems.
Publication Type: Presentation
Episodic occurrence of favourable weather constrains recovery of a cold desert shrubland after fire
Year: 2021
1. Key to the long-term resilience of dryland ecosystems is the recovery of foundation plant species following disturbance. In ecosystems with high interannual weather variability, understanding the influence of short-term environmental conditions on establishment of foundation species is essential for identifying vulnerable landscapes and developing restoration strategies. We asked how annual environmental conditions affect post-fire establishment of Artemisia tridentata, a shrub species that dominates landscapes across much of the western United States, and evaluated the influence of…
Publication Type: Journal Article