Research Database
Displaying 161 - 180 of 277
Spatiotemporal dynamics of fine dead surface fuel moisture content in a Colorado mixed-conifer forest
Year: 2025
BackgroundDead fine fuel moisture content (FMC) is critical for predicting fire behavior and effects. Spatiotemporal variation in FMC occurs due to to variability in atmospheric conditions at the fuel interface, which is influenced by interacting factors including local forest structure and topography. Previous research has primarily examined these patterns over coarse spatial scales and relied on few factors to explain variability.AimsIn this study, we monitored the spatiotemporal variability in FMC and characterized how controls of FMC vary over a fire…
Publication Type: Journal Article
Active-fire landscapes demonstrate structural resistance to subsequent fire and drought
Year: 2025
A key tenet of contemporary management in dry, fire-adapted forests of western North America is the reintroduction of a frequent and low- to moderate-severity fire regime. Where this fire regime has been fully or partially restored, it is critical to evaluate the degree to which these landscapes demonstrate forest structural resistance (i.e., the capacity to retain intrinsic structures through time) under novel climates and disturbances. In this study, we used overlapping airborne lidar datasets spanning active-fire landscapes in the Sierra Nevada, California, to evaluate how tree densities,…
Publication Type: Journal Article
Decreasing landscape carbon storage in western US forests with 2 °C of warming
Year: 2025
Changing climate is altering the amount of carbon that can be sustained in forest ecosystems. Increasing heat and drought is already causing increased mortality and decreased regeneration in some locations. These changes have implications for landscape carbon storage with ongoing climate change. We used a climate analogs approach to project aboveground forest carbon density under +2 °C warming above pre-industrial climate for western US forests. We calculated analogs for current climate and under +2 °C warming and associated carbon density for each time period. We found that in most…
Publication Type: Journal Article
Multiple Fire Index Examination of Future Climate Change Affecting Wildfire Seasonality and Extremes in the Contiguous United States
Year: 2025
Climate change is impacting wildfires in the contiguous United States; thus, projections of fire danger under climate change have the potential to inform responses to changing wildfire risks. We calculate fire indices for 13 dynamically downscaled regional climate models, then count days exceeding relevant fire danger thresholds, and compare future changes for mid- and late-twenty-first century relative to a historical reference period. We then compare the responses of the fire indices to highlight areas of agreement and disagreement on the sign and magnitude of future change in fire danger…
Publication Type: Journal Article
Carbon costs of different pathways for reducing fire hazard in the Sierra Nevada
Year: 2025
Restoring a low-intensity, frequent-fire regime in fire-prone forests offers a promising natural climate solution. Management interventions that include prescribed fire and/or mechanical treatments have effectively reduced fire hazards in the Western United States, yet concerns remain regarding their impact on forest carbon storage. This study used results from a long-term, replicated field experiment to assess the impacts of a restored disturbance regime on carbon dynamics in a Sierra Nevada, mixed conifer forest. The carbon consequences of the treatments were compared to a dynamic baseline…
Publication Type: Journal Article
Power and planning: a critical discourse analysis of tribal and non-tribal Oregon wildfire protection plans
Year: 2025
BackgroundSince the late 1800s, the US government has largely removed Indigenous fire stewardship practices from the landscape by implementing a top-down fire suppression system that criminalized traditional fire practices and denaturalized the role of fire in forested environments. A century of routine fire suppression produced dense, homogenous forests capable of sustaining high-intensity wildfire that exceeds the suppression capabilities of land management organizations in many regions, spurring federal leaders to modify management approaches. As part of this change,…
Publication Type: Journal Article
When the wilderness burns: an analysis of current fire management and the case for prescribed fire in designated wilderness in the United States
Year: 2025
BackgroundUnited States wilderness areas face increasing challenges from altered fire regimes and climate change, and land managers face ever more complex decisions about fire use. While federal policies permit various fire management strategies in wilderness, including prescribed fire, managers predominantly rely on suppression despite broad support to restore and sustain fire's natural role in these landscapes. Consequently, wilderness fire regimes continue to diverge from historical norms. To better understand wilderness fire management, we used surveys and interviews with…
Publication Type: Journal Article
Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications
Year: 2017
Wildfires emit significant amounts of pollutants that degrade air quality. Plumes from three wildfires in the western U.S. were measured from aircraft during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and the Biomass Burning Observation Project (BBOP), both in summer 2013. This study reports an extensive set of emission factors (EFs) for over 80 gases and 5 components of submicron particulate matter (PM1) from these temperate wildfires. These include rarely, or never before, measured oxygenated volatile organic compounds and…
Publication Type: Journal Article
Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds
Year: 2017
The area burned annually by wildfires is expected to increase worldwide due to climate change. Burned areas increase soil erosion rates within watersheds, which can increase sedimentation in downstream rivers and reservoirs. However, which watersheds will be impacted by future wildfires is largely unknown. Using an ensemble of climate, fire, and erosion models, we show that postfire sedimentation is projected to increase for nearly nine tenths of watersheds by >10% and for more than one third of watersheds by >100% by the 2041 to 2050 decade in the western USA. The projected increases…
Publication Type: Journal Article
Climate change and the eco-hydrology of fire: will area burned increase in a warming western USA?
Year: 2017
Wildfire area is predicted to increase with global warming. Empirical statistical models and process-based simulations agree almost universally. The key relationship for this unanimity, observed at multiple spatial and temporal scales, is between drought and fire. Predictive models often focus on ecosystems in which this relationship appears to be particularly strong, such as mesic and arid forests and shrublands with substantial biomass such as chaparral. We examine the drought-fire relationship, specifically the correlations between water-balance deficit and annual area burned, across the…
Publication Type: Journal Article
Evidence of fuels management and fire weather influencing fire severity in an extreme fire event
Year: 2017
Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western U.S. Given this increase there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation and water balance on fire severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across…
Publication Type: Journal Article
Impacts of different land management histories on forest change
Year: 2017
Many western North American forest types have experienced considerable changes in ecosystem structure, composition, and function as a result of both fire exclusion and timber harvesting. These two influences co-occurred over a large portion of dry forests, making it difficult to know the strength of either one on its own or the potential for an interaction between the two. In this study, we used contemporary remeasurements of a systematic historical forest inventory to investigate forest change in the Sierra Nevada. The historical data opportunistically spanned a significant land management…
Publication Type: Journal Article
Climate changes and wildfire alter vegetation of Yellowstone National Park, but forest cover persists
Year: 2017
We present landscape simulation results contrasting effects of changing climates on forest vegetation and fire regimes in Yellowstone National Park, USA, by mid-21st century. We simulated potential changes to fire dynamics and forest characteristics under three future climate projections representing a range of potential future conditions using the FireBGCv2 model. Under the future climate scenarios with moderate warming (>2°C) and moderate increases in precipitation (3–5%), model simulations resulted in 1.2–4.2 times more burned area, decreases in forest cover (10–44%), and reductions in…
Publication Type: Journal Article
Contemporary patterns of fire extent and severity in forests of the Pacific Northwest, USA (1985–2010)
Year: 2017
Fire is an important disturbance in many forest landscapes, but there is heightened concern regarding recent wildfire activity in western North America. Several regional-scale studies focus on high-severity fire, but a comprehensive examination at all levels of burn severity (i.e., low, moderate, and high) is needed to inform our understanding of the ecological effects of contemporary fires and how they vary among vegetation zones at sub-regional scales. We integrate Landsat time series data with field measurements of tree mortality to map burn severity in forests of the Pacific Northwest,…
Publication Type: Journal Article
Previous burns and topography limit and reinforce fire severity in a large wildfire
Year: 2017
In fire-prone forests, self-reinforcing fire behavior may generate a mosaic of vegetation types and structures. In forests long subject to fire exclusion, such feedbacks may result in forest loss when surface and canopy fuel accumulations lead to unusually severe fires. We examined drivers of fire severity in one large (>1000 km2) wildfire in the western United States, the Rim Fire in the Sierra Nevada, California, and how it was influenced by severity of 21 previous fires to examine the influences on (1) the severity of the first fire since 1984 and (2) reburn severity. The random forest…
Publication Type: Journal Article
Regional patterns of postwildfire streamflow response in the Western United States: The importance of scale-specific connectivity
Year: 2017
Wildfires can impact streamflow by modifying net precipitation, infiltration, evapotranspiration, snowmelt, and hillslope run-off pathways. Regional differences in fire trends and postwildfire streamflow responses across the conterminous United States have spurred concerns about the impact on streamflow in forests that serve as water resource areas. This is notably the case for the Western United States, where fire activity and burn severity have increased in conjunction with climate change and increased forest density due to human fire suppression. In this review, we discuss the effects of…
Publication Type: Journal Article
Visions of Restoration in Fire-Adapted Forest Landscapes: Lessons from the Collaborative Forest Landscape Restoration Program
Year: 2017
Collaborative approaches to natural resource management are becoming increasingly common on public lands. Negotiating a shared vision for desired conditions is a fundamental task of collaboration and serves as a foundation for developing management objectives and monitoring strategies. We explore the complex socio-ecological processes involved in developing a shared vision for collaborative restoration of fire-adapted forest landscapes. To understand participant perspectives and experiences, we analyzed interviews with 86 respondents from six collaboratives in the western U.S., part of the…
Publication Type: Journal Article
Effects of climate change on snowpack and fire potential in the western USA
Year: 2017
We evaluate the implications of ten twenty-first century climate scenarios for snow, soil moisture, and fuel moisture across the conterminous western USA using the Variable Infiltration Capacity (VIC) hydrology model. A decline in mountain snowpack, an advance in the timing of spring melt, and a reduction in snow season are projected for five mountain ranges in the region. For the southernmost range (the White Mountains), spring snow at most elevations will disappear by the end of the twenty-first century. We investigate soil and fuel moisture changes for the five mountain ranges and for six…
Publication Type: Journal Article
Assessing vulnerabilities and adapting to climate change in northwestern U.S. forests
Year: 2017
Multiple climate change vulnerability assessments in the Pacific Northwest region of the USA provide the scientific information needed to begin adaptation in forested landscapes. Adaptation options developed by resource managers in conjunction with these assessments, newly summarized in the Climate Change Adaptation Library of the Western United States, provide an extensive choice of peer-reviewed climate-smart management strategies and tactics. More adaptation options are available for vegetation than for any other resource category, allowing vegetation management to be applied across a…
Publication Type: Journal Article
A Review of Pathways for Building Fire Spread in the Wildland Urban Interface Part II: Response of Components and Systems and Mitigation Strategies in the United States
Year: 2017
Structure loss in wildland fires has significantly increased over the past few decades, affected by increased development in rural areas, changing fuel management policies, and climate change, all of which are projected to increase in the future. This paper is Part II of a two-part review, which presents a summary of fundamental and applied research on pathways to fire spread in the wildland urban interface. Part I discussed the fundamentals of wildland fire spread via radiative heat transfer, direct flame contact, and firebrand exposure. Here in Part II, we cover the response of building…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 7
- 8
- 9
- 10
- 11
- …
- Next page
- Last page