Research Database
Displaying 161 - 180 of 198
Wildland firefighter safety zones: a review of past science and summary of future needs
Year: 2014
Current wildland firefighter safety zone guidelines are based on studies that assume flat terrain, radiant heating, finite flame width, constant flame temperature and high flame emissivity. Firefighter entrapments and injuries occur across a broad range of vegetation, terrain and atmospheric conditions generally when they are within two flame heights of the fire. Injury is not confined to radiant heating or flat terrain; consequently, convective heating should be considered as a potential heating mode. Current understanding of energy transport in wildland fires is briefly summarised, followed…
Publication Type: Journal Article
The role of defensible space for residential structure protection during wildfires
Year: 2014
With the potential for worsening fire conditions, discussion is escalating over how to best reduce effects on urban communities. A widely supported strategy is the creation of defensible space immediately surrounding homes and other structures. Although state and local governments publish specific guidelines and requirements, there is little empirical evidence to suggest how much vegetation modification is needed to provide significant benefits. We analysed the role of defensible space by mapping and measuring a suite of variables on modern pre-fire aerial photography for 1000 destroyed and…
Publication Type: Journal Article
Songbird response to wildfire in mixed-conifer forest in south-western Oregon
Year: 2014
We used 1 year of pre-fire and 4 years of post-fire data to quantify changes in the occurrence of birds at burned and unburned sites in a southern Oregon watershed after a 2500-ha wildfire. Our objectives were to identify bird species that increased or decreased as a result of this mixed-severity fire. Of the 27 species we investigated, we found evidence for fire-induced changes in the proportion of sites occupied by 13 species. Of these, most (8 species) were species that occurred at fewer sites after the fire than before. These changes were consistent with changes in vegetation composition…
Publication Type: Journal Article
Briefing: Climate and Wildfire in Western U.S. Forests
Year: 2014
Wildfire in western U.S. federally managed forests has increased substantially in recent decades, with large (>1000 acre) fires in the decade through 2012 over five times as frequent (450 percent increase) and burned area over ten times as great (930 percent increase) as the 1970s and early 1980s. These changes are closely linked to increased temperatures and a greater frequency and intensity of drought. Projected additional future warming implies that wildfire activity may continue to increase in western forests. However, the interaction of changes in climate, fire and other disturbances…
Publication Type: Conference Proceedings
Correlations between components of the water balance and burned area reveal insights for predicting forest fire area in the southwest United States
Year: 2014
We related measurements of annual burned area in the southwest United States during 1984–2013 to records of climate variability. Within forests, annual burned area correlated at least as strongly with spring–summer vapour pressure deficit (VPD) as with 14 other drought-related metrics, including more complex metrics that explicitly represent fuel moisture. Particularly strong correlations with VPD arise partly because this term dictates the atmospheric moisture demand. Additionally, VPD responds to moisture supply, which is difficult to measure and model regionally due to complex…
Publication Type: Journal Article
Mathematical model and sensor development for measuring energy transfer from wildland fires
Year: 2014
Current practices for measuring high heat flux in scenarios such as wildland forest fires use expensive, thermopile-based sensors, coupled with mathematical models based on a semi-infinite-length scale. Although these sensors are acceptable for experimental testing in laboratories, high error rates or the need for water cooling limits their applications in field experiments. Therefore, a one-dimensional, finite-length scale, transient-heat conduction model was developed and combined with an inexpensive, thermocouple-based rectangular sensor, to create a rapidly deployable, non-cooled sensor…
Publication Type: Journal Article
Severity of an uncharacteristically large wildfire, the Rim Fire, in forests with relatively restored frequent fire regimes
Year: 2014
The 2013 Rim Fire, originating on Forest Service land, burned into old-growth forests within Yosemite National Park with relatively restored frequent-fire regimes (¡Ý2 predominantly low and moderate severity burns within the last 35 years). Forest structure and fuels data were collected in the field 3-4 years before the fire, providing a rare chance to use pre-existing plot data to analyze fire effects. We used regression tree and random forests analysis to examine the influence of forest structure, fuel, fire history, topographic and weather conditions on observed fire severity in the Rim…
Publication Type: Journal Article
Vegetation Recovery in Slash-Pile Scars Following Conifer Removal in a Grassland-Restoration Experiment
Year: 2014
A principal challenge to restoring tree-invaded grasslands is the removal of woody biomass. Burning of slash piles to reduce woody residues from forest restoration practices generates intense, prolonged heating, with adverse effects on soils and vegetation. In this study, we examined vegetation responses to pile burning following tree removal from conifer-invaded grasslands of the Oregon Cascades. We quantified the longevity and magnitude of fire effects by comparing ground conditions and the cover and richness of plant species in burn-scar centers (higher-intensity fire) and edges (lower-…
Publication Type: Journal Article
Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States
Year: 2014
Seasonal changes in the climatic potential for very large wildfires (VLWF ≥ 50,000 ac ~ 20,234 ha) across the western contiguous United States are projected over the 21st century using generalized linear models and downscaled climate projections for two representative concentration pathways (RCPs). Significant (p ≤ 0.05) increases in VLWF probability for climate of the mid-21st century (2031–2060) relative to contemporary climate are found, for both RCP 4.5 and 8.5. The largest differences are in the Eastern Great Basin, Northern Rockies, Pacific Northwest, Rocky Mountains, and Southwest.…
Publication Type: Journal Article
Climate and very large wildland fires in the contiguous western USA
Year: 2014
Very large wildfires can cause significant economic and environmental damage, including destruction of homes, adverse air quality, firefighting costs and even loss of life. We examine how climate is associated with very large wildland fires (VLWFs ≥50 000 acres, or ~20 234 ha) in the western contiguous USA. We used composite records of climate and fire to investigate the spatial and temporal variability of VLWF–climatic relationships. Results showed quantifiable fire weather leading up and up to 3 weeks post VLWF discovery, thus providing predictors of the probability that VLWF occurrence in…
Publication Type: Journal Article
Playing with Fire: How climate change and development patterns are constributing to the soaring costs of western wildfires
Year: 2014
Strong scientific evidence shows that climate change is producing hotter, drier conditions that contribute to larger fires and longer fire seasons in the American West today. The annual number of large wildfires on federally managed lands in the 11 western states has increased by more than 75 percent: from approximately 140 during the period 1980–1989 to 250 in the 2000–2009 period. The western wildfire season has grown from five months on average in the 1970s to seven months today. Moreover, the threat of wildfires is projected to worsen over time as rising temperatures—rising more rapidly…
Publication Type: Report
Relationships between climate and macroscale area burned in the western United States
Year: 2013
Increased wildfire activity (e.g. number of starts, area burned, fire behaviour) across the western United States in recent decades has heightened interest in resolving climate–fire relationships. Macroscale climate–fire relationships were examined in forested and non-forested lands for eight Geographic Area Coordination Centers in the western United States, using area burned derived from the Monitoring Trends in Burn Severity dataset (1984–2010). Fire-specific biophysical variables including fire danger and water balance metrics were considered in addition to standard climate variables of…
Publication Type: Journal Article
Allowing a wildfire to burn: estimating the effect on future suppression costs
Year: 2013
Where a legacy of aggressive wildland fire suppression has left forests in need of fuel reduction, allowing wildland fire to burn may provide fuel treatment benefits, thereby reducing suppression costs from subsequent fires. The least-cost-plus-net-value-change model of wildland fire economics includes benefits of wildfire in a framework for evaluating suppression options. In this study, we estimated one component of that benefit – the expected present value of the reduction in suppression costs for subsequent fires arising from the fuel treatment effect of a current fire. To that end, we…
Publication Type: Journal Article
Wildland Fire management: Are actively managed forests more resilient than passively managed forests?
Year: 2013
Large areas of federal lands in the western states are currently at high risk of severe wildfire and have many insect and disease problems, indicating a significant decline in forest health and resilience. Although research studies have not been done that would measure whether actively managed forests are more resilient to wildfires than passively managed forests, results from studies of hazardous fuels treatment effectiveness and the economic benefits from avoided costs of future wildfire suppression due to fuels treatment can be used to support an affirmative reply to the question. If a…
Publication Type: Report
Modelling conditional burn probability patterns for large wildland fires
Year: 2013
We present a technique for modelling conditional burn probability patterns in two dimensions for large wildland fires. The intended use for the model is strategic program planning when information about future fire weather and event durations is unavailable and estimates of the average probabilistic shape and extent of large fires on a landscape are needed. To model average conditional burn probability patterns, we organised historical fire data from Yellowstone National Park, USA, into a set of grids; one grid per fire. We captured various spatial relationships inherent in the gridded data…
Publication Type: Journal Article
Climate Change and Disruptions to Global Fire Activity
Year: 2012
Future disruptions to fire activity will threaten ecosystems and human well-being throughout the world, yet there are few fire projections at global scales and almost none from a broad range of global climate models (GCMs). Here we integrate global fire datasets and environmental covariates to build spatial statistical models of fire probability at a 0.58 resolution and examine environmental controls on fire activity. Fire models are driven by climate norms from 16 GCMs (A2 emissions scenario) to assess the magnitude and direction of change over two time periods, 2010–2039 and 2070–2099. From…
Publication Type: Journal Article
Wildfire exposure to analysis on the national forests in the Pacific Northwest, USA
Year: 2012
We analyzed wildfire exposure for key social and ecological features on the national forests in Oregon and Washington. The forests contain numerous urban interfaces, old growth forests, recreational sites, and habitat for rare and endangered species. Many of these resources are threatened by wildfire, especially in the east Cascade Mountains fire-prone forests. The study illustrates the application of wildfire simulation for risk assessment where the major threat is from large and rare naturally ignited fires, versus many previous studies that have focused on risk driven by frequent and small…
Publication Type: Journal Article
Meta-analysis of avian and small-mammal response to fire severity and fire surrogate treatments in US fire-prone forests
Year: 2012
Management in fire-prone ecosystems relies widely upon application of prescribed fire and/or fire surrogate (e.g., forest thinning) treatments to maintain biodiversity and ecosystem function. Recently, published literature examining wildlife response to fire and fire management has increased rapidly. However, none of this literature has been synthesized quantitatively, precluding assessment of consistent patterns of wildlife response among treatment types. Using meta-analysis, we examined the scientific literature on vertebrate demographic responses to burn severity (low/moderate, high), fire…
Publication Type: Journal Article
Atmospheric Interactions with Wildland Fire Behaviour I. Basic Surface Interactions, Vertical Profiles and Synoptic Structures
Year: 2012
This paper is the first of two reviewing scientific literature from 100 years of research addressing interactions between the atmosphere and fire behaviour. These papers consider research on the interactions between the fuels burning at any instant and the atmosphere, and the interactions between the atmosphere and those fuels that will eventually burn in a given fire. This first paper reviews the progression from the surface atmospheric properties of temperature, humidity and wind to horizontal and vertical synoptic structures and ends with vertical atmospheric profiles. (The companion paper…
Publication Type: Journal Article
Delayed Phenology and Reduced Fitness Associated with Climate Change in a Wild Hibernator
Year: 2012
The most commonly reported ecological effects of climate change are shifts in phenologies, in particular of warmer spring temperatures leading to earlier timing of key events. Among animals, however, these reports have been heavily biased towards avian phenologies, whereas we still know comparatively little about other seasonal adaptations, such as mammalian hibernation. Here we show a significant delay (0.47 days per year, over a 20-year period) in the hibernation emergence date of adult females in a wild population of Columbian ground squirrels in Alberta, Canada. This finding was related…
Publication Type: Journal Article