Research Database
Displaying 61 - 80 of 246
‘Mind the Gap’—reforestation needs vs. reforestation capacity in the western United States
Year: 2024
Tree establishment following severe or stand-replacing disturbance is critical for achieving U.S. climate change mitigation goals and for maintaining the co-benefits of intact forest ecosystems. In many contexts, natural post-fire tree regeneration is sufficient to maintain forest cover and associated ecosystem services, but increasingly the pattern and scale of disturbance exceeds ecological thresholds and active reforestation may be warranted. Our capacity to plant trees, however, is not keeping pace with reforestation needs. This shortfall is uniquely apparent in the western U.S., where…
Publication Type: Journal Article
Human driven climate change increased the likelihood of the 2023 record area burned in Canada
Year: 2024
In 2023, wildfires burned 15 million hectares in Canada, more than doubling the previous record. These wildfires caused a record number of evacuations, unprecedented air quality impacts across Canada and the northeastern United States, and substantial strain on fire management resources. Using climate models, we show that human-induced climate change significantly increased the likelihood of area burned at least as large as in 2023 across most of Canada, with more than two-fold increases in the east and southwest. The long fire season was more than five times as likely and the large areas…
Publication Type: Journal Article
Comparing ground-based lightning detection networks near wildfire points-of-origin
Year: 2024
Lightning detection and attribution to wildfire ignitions is a critical component of fire management worldwide to both reduce hazards of wildfire to values-at-risk and to enhance the potential for wildland fire to provide resource benefits in fire-adapted ecosystems. We compared two operational ground-based lightning detection networks used by fire managers to identify cloud-to-ground strokes within operationally-relevant distances (1.6 km) of the origins of 4408 western United States lightning-ignited wildfires spanning May–September 2020. Applying two sets of constraints–varying…
Publication Type: Journal Article
Biogeographic patterns of daily wildfire spread and extremes across North America
Year: 2024
Introduction: Climate change is predicted to increase the frequency of extreme single-day fire spread events, with major ecological and social implications. In contrast with well-documented spatio-temporal patterns of wildfire ignitions and perimeters, daily progression remains poorly understood across continental spatial scales, particularly for extreme single-day events (“blow ups”). Here, we characterize daily wildfire spread across North America, including occurrence of extreme single-day events, duration and seasonality of fire and extremes, and ecoregional climatic…
Publication Type: Journal Article
Connecting dryland fine-fuel assessments to wildfire exposure and natural resource values at risk
Year: 2023
Background Wildland fire in arid and semi-arid (dryland) regions can intensify when climatic, biophysical, and land-use factors increase fuel load and continuity. To inform wildland fire management under these conditions, we developed high-resolution (10-m) estimates of fine fuel across the Altar Valley in southern Arizona, USA, which spans dryland, grass-dominated ecosystems that are administered by multiple land managers and owners. We coupled field measurements at the end of the 2021 growing season with Sentinel-2 satellite imagery and vegetation indices acquired during and after the…
Publication Type: Journal Article
Mechanical thinning restores ecological functions in a seasonally dry ponderosa pine forest in the inland Pacific Northwest, USA
Year: 2023
An increasingly important goal of federal land managers in seasonally dry forests of the western US is restoring forest resilience. In this study, we quantified the degree to which a thinning treatment in a dry forest of eastern Oregon restored aspects of forest resilience by focusing on key functional attributes of our study system. First, we measured several physiological responses of overstory trees that are associated with resilience, including radial growth, resin production, abundance of non-structural carbohydrates (NSC), and leaf area. Second, we investigated understory vegetation…
Publication Type: Journal Article
The outsized role of California’s largest wildfires in changing forest burn patterns and coarsening ecosystem scale
Year: 2023
Highlights • We evaluated trends for 1,809 fires that burned 1985–2020 across California forests. • Top 1% of fires by size burned 47% of total area burned across the study period. • Top 1% (18 fires) produced 58% of high and 42% of low-moderate severity area. • Top 1% created novel landscape patterns of large burn severity patches. • These large fires create new opportunities for managing forest resilience. Although recent large wildfires in California forests are well publicized in media and scientific literature, their cumulative effects on forest structure and implications for forest…
Publication Type: Journal Article
MCDM-Based Wildfire Risk Assessment: A Case Study on the State of Arizona
Year: 2023
The increasing frequency of wildfires has posed significant challenges to communities worldwide. The effectiveness of all aspects of disaster management depends on a credible estimation of the prevailing risk. Risk, the product of a hazard’s likelihood and its potential consequences, encompasses the probability of hazard occurrence, the exposure of assets to these hazards, existing vulnerabilities that amplify the consequences, and the capacity to manage, mitigate, and recover from their consequences. This paper employs the multiple criteria decision-making (MCDM) framework, which produces…
Publication Type: Journal Article
Consistent spatial scaling of high-severity wildfire can inform expected future patterns of burn severity
Year: 2023
Increasing wildfire activity in forests worldwide has driven urgency in understanding current and future fire regimes. Spatial patterns of area burned at high severity strongly shape forest resilience and constitute a key dimension of fire regimes, yet remain difficult to predict. To characterize the range of burn severity patterns expected within contemporary fire regimes, we quantified scaling relationships relating fire size to patterns of burn severity. Using 1615 fires occurring across the Northwest United States between 1985 and 2020, we evaluated scaling relationships within fire…
Publication Type: Journal Article
Modification of Soil Hydroscopic and Chemical Properties Caused by Four Recent California, USA Megafires
Year: 2023
While it is well known that wildfires can greatly contribute to soil water repellency by changing soil chemical composition, the mechanisms of these changes are still poorly understood. In the past decade, the number, size, and intensity of wildfires have greatly increased in the western USA. Recent megafires in California (i.e., the Dixie, Beckwourth Complex, Caldor, and Mosquito fires) provided us with an opportunity to characterize pre- and post-fire soils and to study the effects of fires on soil water repellency, soil organic constituents, and connections between the two. Water drop…
Publication Type: Journal Article
Fire-regime variability and ecosystem resilience over four millennia in a Rocky Mountain subalpine watershed
Year: 2023
- Wildfires strongly influence forest ecosystem processes, including carbon and nutrient cycling, and vegetation dynamics. As fire activity increases under changing climate conditions, the ecological and biogeochemical resilience of many forest ecosystems remains unknown.
- To investigate the resilience of forest ecosystems to changing climate and wildfire activity over decades to millennia, we developed a 4800-year high-resolution lake-sediment record from Silver Lake, Montana, USA (47.360° N, 115.566° W). Charcoal particles, pollen grains, element concentrations and stable…
Publication Type: Journal Article
A Conceptual Framework for Knowledge Exchange in a Wildland Fire Research and Practice Context
Year: 2023
Wildland fire is an important natural disturbance in many vegetated areas of the world. However, fire management actions are critical not only to prevent and suppress unwanted fires, but also mitigate and recover from the negative impacts of fire on people and communities. Advancements in wildland fire science can help inform these necessary actions in wildland fire management. How science is created and integrated into these fire management decision-making processes, whether through collaborations with external researchers and/or with scientists within a wildland fire management agency…
Publication Type: Journal Article
Measuring the long-term costs of uncharacteristic wildfire: a case study of the 2010 Schultz Fire in Northern Arizona
Year: 2023
Background
Wildfires often have long-lasting costs that are difficult to document and are rarely captured in full.
Aims
We provide an example for measuring the full costs of a single wildfire over time, using a case study from the 2010 Schultz Fire near Flagstaff, Arizona, to enhance our understanding of the long-term costs of uncharacteristic wildfire.
Methods
We conducted a partial remeasurement of a 2013 study on the costs of the Schultz Fire by updating government and utility expenditures, conducting a survey of affected homeowners, estimating costs to ecosystem services and…
Publication Type: Journal Article
Shaded fuel breaks create wildfire-resilient forest stands: lessons from a long-term study in the Sierra Nevada
Year: 2023
Background In California’s mixed-conifer forests, fuel reduction treatments can successfully reduce fire severity, bolster forest resilience, and make lasting changes in forest structure. However, current understanding of the duration of treatment effectiveness is lacking robust empirical evidence. We leveraged data collected from 20-year-old forest monitoring plots within fuel treatments that captured a range of wildfire occurrence (i.e., not burned, burned once, or burned twice) following initial plot establishment and overstory thinning and prescribed fire treatments. Results Initial…
Publication Type: Journal Article
Terrestrial carbon dynamics in an era of increasing wildfire
Year: 2023
In an increasingly flammable world, wildfire is altering the terrestrial carbon balance. However, the degree to which novel wildfire regimes disrupt biological function remains unclear. Here, we synthesize the current understanding of above- and belowground processes that govern carbon loss and recovery across diverse ecosystems. We find that intensifying wildfire regimes are increasingly exceeding biological thresholds of resilience, causing ecosystems to convert to a lower carbon-carrying capacity. Growing evidence suggests that plants compensate for fire damage by allocating carbon…
Publication Type: Journal Article
Drivers of California’s changing wildfires: a state-of-the-knowledge synthesis
Year: 2023
Over the past four decades, annual area burned has increased significantly in California and across the western USA. This trend reflects a confluence of intersecting factors that affect wildfire regimes. It is correlated with increasing temperatures and atmospheric vapour pressure deficit. Anthropogenic climate change is the driver behind much of this change, in addition to influencing other climate-related factors, such as compression of the winter wet season. These climatic trends and associated increases in fire activity are projected to continue into the future. Additionally, factors…
Publication Type: Journal Article
Community Forests advance local wildfire governance and proactive management in British Columbia, Canada
Year: 2023
As wildfires are increasingly causing negative impacts to communities and their livelihoods, many communities are demanding more proactive and locally driven approaches to address wildfire risk. This marks a shift away from centralized governance models where decision-making is concentrated in government agencies that prioritize reactive wildfire suppression. In British Columbia (BC), Canada, Community Forests—a long-term, area-based tenure granted to Indigenous and/or local communities—are emerging as local leaders facilitating proactive wildfire management. To explore the factors that are…
Restoration and Hazardous Fuel Reduction, Risk Assessment and Analysis, Social and Community Impacts of Fire
Publication Type: Journal Article
Climate and fire impacts on tree recruitment in mixed conifer forests in Northwestern Mexico and California
Year: 2023
Frequent-fire forests were once heterogeneous at multiple spatial scales, which contributed to their resilience to severe fire. While many studies have characterized historical spatial patterns in frequent-fire forests, fewer studies have investigated their temporal dynamics. We investigated the influences of fire and climate on the timing of conifer recruitment in old-growth Jeffrey pine-mixed conifer forests in the Sierra San Pedro Martir (SSPM) and the eastern slope of Sierra Nevada. Additionally, we evaluated the impacts of fire exclusion and recent climate change on recruitment levels…
Publication Type: Journal Article
Future regional increases in simultaneous large Western USA wildfires
Year: 2023
Background: Wildfire simultaneity affects the availability and distribution of resources for fire management: multiple small fires require more resources to fight than one large fire does. Aims: The aim of this study was to project the effects of climate change on simultaneous large wildfires in the Western USA, regionalised by administrative divisions used for wildfire management. Methods: We modelled historical wildfire simultaneity as a function of selected fire indexes using generalised linear models trained on observed climate and fire data from 1984 to 2016. We then applied these models…
Publication Type: Journal Article
Examining the influence of mid-tropospheric conditions and surface wind changes on extremely large fires and fire growth days
Year: 2023
Background: Previous work by the author and others has examined weather associated with growth of exceptionally large fires (‘Fires of Unusual Size’, or FOUS), looking at three of four factors associated with critical fire weather patterns: antecedent drying, high wind and low humidity. However, the authors did not examine atmospheric stability, the fourth factor. Aims: This study examined the relationships of mid-tropospheric stability and dryness used in the Haines Index, and changes in surface wind speed or direction, to growth of FOUS. Methods. Weather measures were paired with daily…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 2
- 3
- 4
- 5
- 6
- …
- Next page
- Last page