Research Database
Displaying 21 - 40 of 284
Evaluating a simulation-based wildfire burn probability map for the conterminous US
Year: 2025
Background: Wildfire simulation models are used to derive maps of burn probability (BP) based on fuels, weather, topography and ignition locations, and BP maps are key components of wildfire risk assessments.Aims: Few studies have compared BP maps with real-world fires to evaluate their suitability for near-future risk assessment. Here, we evaluated a BP map for the conterminous US based on the large fire simulation model FSim.Methods: We compared BP with observed wildfires from 2016 to 2022 across 128 regions representing similar fire regimes (‘pyromes’). We…
Publication Type: Journal Article
Collapse and restoration of mature forest habitat in California
Year: 2025
Mature and old-growth forests provide critically important ecosystems services and wildlife habitats, but they are being lost at a rapid rate to uncharacteristic mega-disturbances. We developed a simulation system to project time-to-extinction for mature and old-growth forest habitat in the Sierra Nevada, California, USA. The simulation parameters were derived from a 1985–2022 empirical time-series of habitat for the southern Sierra Nevada fisher (Pekania pennanti), an endangered native mammal and old-forest obligate that has seen a 50 % decline in its habitat over the past…
Publication Type: Journal Article
Wildland Firefighters Suffer Increasing Risk of Job-Related Death
Year: 2025
Wildland firefighting is a niche specialization in the fire service - inherently dangerous with unique risks. Over the past decade, fatalities amongst all firefighters have decreased; however, wildland firefighter fatalities have increased. This subject has only been described in the grey literature, and a paucity of medical literature exists. The United States Fire Administration's online fatality database was queried for on duty mortality between 1990 and 2022. The year 2001 was excluded due to the 340 deaths that occurred on September 11th. Data collected included demographics, incident…
Publication Type: Journal Article
Multifactor Change in Western U.S. Nighttime Fire Weather
Year: 2025
Reports from western U.S. firefighters that nighttime fire activity has been increasing during the spans of many of their careers have recently been confirmed by satellite measurements over the 2003–20 period. The hypothesis that increasing nighttime fire activity has been caused by increased nighttime vapor pressure deficit (VPD) is consistent with recent documentation of positive, 40-yr trends in nighttime VPD over the western United States. However, other meteorological conditions such as near-surface wind speed and planetary boundary layer depth also impact fire behavior and exhibit…
Publication Type: Journal Article
Short-term impacts of operational fuel treatments on modelled fire behaviour and effects in seasonally dry forests of British Columbia, Canada
Year: 2025
Background: In response to increasing risk of extreme wildfire across western North America, forest managers are proactively implementing fuel treatments.Aims: We assessed the efficacy of alternative combinations of thinning, pruning and residue fuel management to mitigate potential fire behaviour and effects in seasonally dry forests of interior British Columbia, Canada.Methods: Across five community forests, we measured stand attributes before and after fuel treatments in 2021 and 2022, then modelled fire behaviour and effects using the…
Publication Type: Journal Article
Ecological scenarios: Embracing ecological uncertainty in an era of global change
Year: 2025
Scenarios, or plausible characterizations of the future, can help natural resource stewards plan and act under uncertainty. Current methods for developing scenarios for climate change adaptation planning are often focused on exploring uncertainties in future climate, but new approaches are needed to better represent uncertainties in ecological responses. Scenarios that characterize how ecological changes may unfold in response to climate and describe divergent and surprising ecological outcomes can help natural resource stewards recognize signs of nascent ecological transformation and…
Publication Type: Journal Article
Compounding effects of climate change and WUI expansion quadruple the likelihood of extreme-impact wildfires in California
Year: 2025
Previous research has examined individual factors contributing to wildfire risk, but the compounding effects of these factors remain underexplored. Here, we introduce the “Integrated Human-centric Wildfire Risk Index (IHWRI)” to quantify the compounding effects of fire-weather intensification and anthropogenic factors—including ignitions and human settlement into wildland—on wildfire risk. While climatic trends increased the frequency of high-risk fire-weather by 2.5-fold, the combination of this trend with wildland-urban interface expansion led to a 4.1-fold increase in the frequency of…
Publication Type: Journal Article
Climate Change Contributions to US Wildfire Smoke PM2.5 Mortality Between 2006-2020
Year: 2025
RATIONALE Wildfires have increased in frequency and intensity due to climate change and now contribute to nearly half of the annual average of fine particulate matter in the US. While the effects of short-term wildfire-PM2.5 exposure on respiratory diseases are well-described, the impact of climate change on longer duration wildfire-PM2.5 mortality is unknown. Our aim was to determine the contribution of anthropogenic climate change to wildfire smoke PM2.5 mortality on a county-level across the conterminous US between 2006-2020. METHODS We use an attribution model to compare observed wildfire…
Publication Type: Journal Article
Wildland fire entrainment: The missing link between wildland fire and its environment
Year: 2025
Wildfires are growing in destructive power, and accurately predicting the spread and intensity of wildland fire is essential for managing ecological and societal impacts. No current operational models used for fire behavior prediction resolve critical fire-atmospheric coupling or nonlocal influences of the fire environment, rendering them inadequate in accounting for the range of wildland fire behavior scenarios under increasingly novel fuel and climate conditions. Here, we present a new perspective on a dominant fire-atmospheric feedback mechanism, which we term wildland fire entrainment (…
Publication Type: Journal Article
Role of Forensic Anthropology in the Search and Recovery of Fatal Wildland Fire Victims
Year: 2025
The search and recovery process of fatal fire victims is one of the greatest challenges in forensic anthropology, especially in large-scale wildland fire disasters. Burned human remains can exhibit significant variation in their degree of preservation depending on the temperature of the fire, the length of exposure to the heat source, and intrinsic characteristics of the victim (e.g., body size, age, and bone density). Wildland fire victims typically exhibit characteristics of the final stages of burning (i.e., nearly complete to complete calcination). The search for burned human remains is…
Publication Type: Journal Article
Enhancing fire emissions inventories for acute health effects studies: integrating high spatial and temporal resolution data
Year: 2025
Background: Daily fire progression information is crucial for public health studies that examine the relationship between population-level smoke exposures and subsequent health events. Issues with remote sensing used in fire emissions inventories (FEI) lead to the possibility of missed exposures that impact the results of acute health effects studies.Aims: This paper provides a method for improving an FEI dataset with readily available information to create a more robust dataset with daily fire progression.Methods: High temporal and spatial…
Publication Type: Journal Article
A cellular necrosis process model for estimating conifer crown scorch
Year: 2025
Fire-caused tree mortality has major impacts on forest ecosystems. One primary cause of post-fire tree mortality in non-resprouting species is crown scorch, the percentage of foliage in a crown that is killed by heat. Despite its importance, the heat required to kill foliage is not well-understood. We used the “lag” model to describe time- and temperature-dependent leaf cell necrosis as a method of predicting leaf scorch. The lag model includes two rate parameters that describe 1) the process of cells accumulating non-lethal damage, and 2) damage becoming lethal to the cell. To parameterize…
Publication Type: Journal Article
Changing fire regimes in the Great Basin USA
Year: 2025
Wildfire is a natural disturbance in landscapes of the Western United States, but the effects and extents of fire are changing. Differences between historical and contemporary fire regimes can help identify reasons for observed changes in landscape composition. People living and working in the Great Basin, USA, are observing altered fire conditions, but spatial information about the degree and direction of change and departure from historical fire regimes is lacking. This study estimates how fire regimes have changed in the major Great Basin vegetation types over the past 60 years with…
Publication Type: Journal Article
Wildfire probability estimated from recent climate and fine fuels across the big sagebrush region
Year: 2024
BackgroundWildfire is a major proximate cause of historical and ongoing losses of intact big sagebrush (Artemisia tridentata Nutt.) plant communities and declines in sagebrush obligate wildlife species. In recent decades, fire return intervals have shortened and area burned has increased in some areas, and habitat degradation is occurring where post-fire re-establishment of sagebrush is hindered by invasive annual grasses. In coming decades, the changing climate may accelerate these wildfire and invasive feedbacks, although projecting future wildfire dynamics requires a better…
Publication Type: Journal Article
The fastest-growing and most destructive fires in the US (2001 to 2020)
Year: 2024
The most destructive and deadly wildfires in US history were also fast. Using satellite data, we analyzed the daily growth rates of more than 60,000 fires from 2001 to 2020 across the contiguous US. Nearly half of the ecoregions experienced destructive fast fires that grew more than 1620 hectares in 1 day. These fires accounted for 78% of structures destroyed and 61% of suppression costs ($18.9 billion). From 2001 to 2020, the average peak daily growth rate for these fires more than doubled (+249% relative to 2001) in the Western US. Nearly 3 million structures were within 4 kilometers of a…
Publication Type: Journal Article
Tribal stewardship for resilient forest socio-ecosystems
Year: 2024
The Yurok Tribe, along with other tribal communities in northwest California, non-profit organizations, universities, and governmental agencies are working to restore forests and woodlands to be more resilient to wildfires, drought, pests and diseases. Our current work within ancestral Yurok territory is designing and evaluating effects of forest treatments including fuels reduction, tree harvesting, and intentional burning based upon indigenous knowledge and associated traditional stewardship practices. Central to these evaluations are the potential availability, quantity, and quality of…
Publication Type: Journal Article
Retention of highly qualified wildland firefighters in the Western United States
Year: 2024
Federal agencies responsible for wildland fire management face increasing needs for personnel as fire seasons lengthen and fire size continues to grow, yet federal agencies have struggled to recruit and retain firefighting personnel. While many have speculated that long seasons, challenging working conditions, and low wages contribute to recruitment and retention challenges, there has been…
Publication Type: Journal Article
The Interannual Variability of Global Burned Area Is Mostly Explained by Climatic Drivers
Year: 2024
Better understanding how fires respond to climate variability is an issue of current interest in light of ongoing climate change. However, evaluating the global-scale temporal variability of fires in response to climate presents a challenge due to the intricate processes at play and the limitation of fire data. Here, we investigate the links between year-to-year variability of burned area (BA) and climate using BA data, the Fire Weather Index (FWI), and the Standardized Precipitation Evapotranspiration Index (SPEI) from 2001 to 2021 at ecoregion scales. Our results reveal complex spatial…
Publication Type: Journal Article
Drivers and Impacts of the Record-Breaking 2023 Wildfire Season in Canada
Year: 2024
The 2023 wildfire season in Canada was unprecedented in its scale and intensity, spanning from mid-April to late October and across much of the forested regions of Canada. Here, we summarize the main causes and impacts of this exceptional season. The record-breaking total area burned (~15 Mha)can be attributed to several environmental factors that converged early in the season: early snowmelt, multi annual drought conditions in western Canada, and the rapid transition to drought in eastern Canada. Anthropogenic climate change enabled sustained extreme fire weather conditions, as the meanMay–…
Publication Type: Journal Article
Estimating the influence of field inventory sampling intensity on forest landscape model performance for determining high-severity wildfire risk
Year: 2024
Historically, fire has been essential in Southwestern US forests. However, a century of fire-exclusion and changing climate created forests which are more susceptible to uncharacteristically severe wildfires. Forest managers use a combination of thinning and prescribed burning to reduce forest density to help mitigate the risk of high-severity fires. These treatments are laborious and expensive, therefore optimizing their impact is crucial. Landscape simulation models can be useful in identifying high risk areas and assessing treatment effects, but uncertainties in these models can limit…
Publication Type: Journal Article