Research Database
Displaying 21 - 40 of 97
Fire suppression makes wildfires more severe and accentuates impacts of climate change and fuel accumulation
Year: 2024
Fire suppression is the primary management response to wildfires in many areas globally. By removing less-extreme wildfires, this approach ensures that remaining wildfires burn under more extreme conditions. Here, we term this the “suppression bias” and use a simulation model to highlight how this bias fundamentally impacts wildfire activity, independent of fuel accumulation and climate change. We illustrate how attempting to suppress all wildfires necessarily means that fires will burn with more severe and less diverse ecological impacts, with burned area increasing at faster rates than…
Publication Type: Journal Article
Old reserves and ancient buds fuel regrowth of coast redwood after catastrophic fire
Year: 2023
For long-lived organisms, investment in insurance strategies such as reserve energy storage can enable resilience to resource deficits, stress or catastrophic disturbance. Recent fire in California damaged coast redwood (Sequoia sempervirens) groves, consuming all foliage on some of the tallest and oldest trees on Earth. Burned trees recovered through resprouting from roots, trunk and branches, necessarily supported by nonstructural carbon reserves. Nonstructural carbon reserves can be many years old, but direct use of old carbon has rarely been documented and never in such large, old trees.…
Publication Type: Journal Article
Identifying building locations in the wildland–urban interface before and after fires with convolutional neural networks
Year: 2023
Background: Wildland–urban interface (WUI) maps identify areas with wildfire risk, but they are often outdated owing to the lack of building data. Convolutional neural networks (CNNs) can extract building locations from remote sensing data, but their accuracy in WUI areas is unknown. Additionally, CNNs are computationally intensive and technically complex, making them challenging for end-users, such as those who use or create WUI maps, to apply. Aims: We identified buildings pre- and post-wildfire and estimated building destruction for three California wildfires: Camp, Tubbs and Woolsey.…
Publication Type: Journal Article
Higher burn severity stimulates postfire vegetation and carbon recovery in California
Year: 2023
As the climate continues to warm, the severity of wildfires is increasing. However, the potential impact of higher burn severity on ecosystem resilience and regional carbon balance is still not clear. There are ongoing debates regarding whether increased burn severity stimulates or delays postfire vegetation and carbon recovery. In this study, we utilized remote sensing data to analyze burn severity and vegetation observations, as well as model simulations to assess wildfire carbon emissions and ecosystem carbon fluxes. Our focus was on examining the dynamics of vegetation and carbon flux…
Publication Type: Journal Article
Fire frequency and vulnerability in California
Year: 2023
Wildfires pose a large and growing threat to communities across California, and understanding fire vulnerability and impacts can enable more effective risk management. Government hazard maps are often used to identify at-risk areas, but hazard zones and fire experience may have different implications for communities. This analysis of three decades of fire footprints, hazard maps, and census and real estate data shows that communities with high fire experience differ substantially from communities with high fire hazard. High-hazard communities average higher incomes than low- and no-hazard…
Publication Type: Journal Article
Terrestrial carbon dynamics in an era of increasing wildfire
Year: 2023
In an increasingly flammable world, wildfire is altering the terrestrial carbon balance. However, the degree to which novel wildfire regimes disrupt biological function remains unclear. Here, we synthesize the current understanding of above- and belowground processes that govern carbon loss and recovery across diverse ecosystems. We find that intensifying wildfire regimes are increasingly exceeding biological thresholds of resilience, causing ecosystems to convert to a lower carbon-carrying capacity. Growing evidence suggests that plants compensate for fire damage by allocating carbon…
Publication Type: Journal Article
Long-term mortality burden trends attributed to black carbon and PM2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study
Year: 2023
Background
Long-term improvements in air quality and public health in the continental USA were disrupted over the past decade by increased fire emissions that potentially offset the decrease in anthropogenic emissions. This study aims to estimate trends in black carbon and PM2·5 concentrations and their attributable mortality burden across the USA.
Methods
In this study, we derived daily concentrations of PM2·5 and its highly toxic black carbon component at a 1-km resolution in the USA from 2000 to 2020 via deep learning that integrated big data from satellites, models, and surface…
Publication Type: Journal Article
MCDM-Based Wildfire Risk Assessment: A Case Study on the State of Arizona
Year: 2023
The increasing frequency of wildfires has posed significant challenges to communities worldwide. The effectiveness of all aspects of disaster management depends on a credible estimation of the prevailing risk. Risk, the product of a hazard’s likelihood and its potential consequences, encompasses the probability of hazard occurrence, the exposure of assets to these hazards, existing vulnerabilities that amplify the consequences, and the capacity to manage, mitigate, and recover from their consequences. This paper employs the multiple criteria decision-making (MCDM) framework, which produces…
Publication Type: Journal Article
Fuel Profiles and Biomass Carbon Following Bark Beetle Outbreaks: Insights for Disturbance Interactions from a Historical Silvicultural Experiment
Year: 2023
Anticipating consequences of disturbance interactions on ecosystem structure and function is a critical management priority as disturbance activity increases with warming climate. Across the Northern Hemisphere, extensive tree mortality from recent bark beetle outbreaks raises concerns about potential fire behavior and post-fire forest function. Silvicultural treatments (that is, partial or complete cutting of forest stands) may reduce outbreak severity and subsequent fuel loads, but longevity of pre-outbreak treatment effects on outbreak severity and post-outbreak fuel profiles remains…
Publication Type: Journal Article
Pyrogenic carbon decomposition critical to resolving fire’s role in the Earth system
Year: 2022
Recently identified post-fire carbon fluxes indicate that, to understand whether global fires represent a net carbon source or sink, one must consider both terrestrial carbon retention through pyrogenic carbon production and carbon losses via multiple pathways. Here these legacy source and sink pathways are quantified using a CMIP6 land surface model to estimate Earth’s fire carbon budget. Over the period 1901–2010, global pyrogenic carbon has driven an annual soil carbon accumulation of 337 TgC yr−1, offset by legacy carbon losses totalling −248 TgC yr−1. The residual of these values…
Publication Type: Journal Article
Future climate risks from stress, insects and fire across US forests
Year: 2022
Forests are currently a substantial carbon sink globally. Many climate change mitigation strategies leverage forest preservation and expansion, but rely on forests storing carbon for decades to centuries. Yet climate-driven disturbances pose critical risks to the long-term stability of forest carbon. We quantify the climate drivers that influence wildfire and climate stress-driven tree mortality, including a separate insect-driven tree mortality, for the contiguous United States for current (1984–2018) and project these future disturbance risks over the 21st century. We find that current…
Publication Type: Journal Article
A framework for quantifying forest wildfire hazard and fuel treatment effectiveness from stands to landscapes
Year: 2022
Background Wildland fires are fundamentally landscape phenomena, making it imperative to evaluate wildland fire strategic goals and fuel treatment effectiveness at large spatial and temporal scales. Outside of simulation models, there is limited information on how stand-level fuel treatments collectively contribute to broader landscape-level fuel management goals. Our objective here is to present a framework designed to measure fuel treatment effectiveness from stands to landscapes to inform fuel treatment planning and improve ecological and social resilience to wildland fire. Results Our…
Publication Type: Journal Article
Frequency of disturbance mitigates high-severity fire in the Lake Tahoe Basin, California and Nevada
Year: 2022
Because of past land use changes and changing climate, forests are moving outside of their historical range of variation. As fires become more severe, forest managers are searching for strategies that can restore forest health and reduce fire risk. However, management activities are only one part of a suite of disturbance vectors that shape forest conditions. To account for the range of disturbance intensities and disturbance types (wildfire, bark beetles, and management), we developed a disturbance return interval (DRI) that represents the average return period for any disturbance, human or…
Publication Type: Journal Article
High‐severity wildfire leads to multi‐decadal impacts on soil biogeochemistry in mixed‐conifer forests
Year: 2020
During the past century, systematic wildfire suppression has decreased fire frequency and increased fire severity in the western United States of America. While this has resulted in large ecological changes aboveground such as altered tree species composition and increased forest density, little is known about the long‐term, belowground implications of altered, ecologically novel, fire regimes, especially on soil biological processes. To better understand the long‐term implications of ecologically novel, high‐severity fire, we used a 44‐yr high‐severity fire chronosequence in the Sierra…
Publication Type: Journal Article
Tamm review: The effects of prescribed fire on wildfire regimes and impacts: A framework for comparison
Year: 2020
Prescribed fire can result in significant benefits to ecosystems and society. Examples include improved wildlifehabitat, enhanced biodiversity, reduced threat of destructive wildfire, and enhanced ecosystem resilience.Prescribed fire can also come with costs, such as reduced air quality and impacts to fire sensitive species. To planfor appropriate use of prescribed fire, managers need information on the tradeoffs between prescribed fire andwildfire regimes. In this study, we argue that information on tradeoffs should be presented at spatial andtemporal scales commensurate with the scales at…
Publication Type: Journal Article
Effects of season and interval of prescribed burns on pyrogenic carbon in ponderosa pine stands in the southern Blue Mountains, Oregon, USA
Year: 2019
In ponderosa pine (Pinus ponderosa) forests of the western United States, prescribed burns are used to reduce fuel loads and restore historical fire regimes. The season of and interval between burns can have complex consequences for the ecosystem, including the production of pyrogenic carbon (PyC). PyC plays a crucial role in soil carbon cycling, displaying turnover times that are orders of magnitude longer than unburned organic matter. This work investigated how the season of and interval between prescribed burns affects soil organic matter, including the formation and retention of PyC, in a…
Publication Type: Journal Article
Spatial and temporal assessment of responder exposure to snag hazards in post-fire environments
Year: 2019
Researchers and managers increasingly recognize enterprise risk management as critical to addressing contemporary fire management challenges. Quantitative wildfire risk assessments contribute by parsing and mapping potentially contradictory positive and negative fire effects. However, these assessments disregard risks to fire responders because they only address social and ecological resources and assets. In this study, we begin to overcome this deficiency by using a novel modeling approach that integrates remote sensing, field inventories, imputation-based vegetation modeling, and empirical…
Publication Type: Journal Article
Pyro-Ecophysiology: Shifting the Paradigm of Live Wildland Fuel Research
Year: 2018
The most destructive wildland fires occur in mixtures of living and dead vegetation, yet very little attention has been given to the fundamental differences between factors that control their flammability. Historically, moisture content has been used to evaluate the relative flammability of live and dead fuels without considering major, unreported differences in the factors that control their variations across seasons and years. Physiological changes at both the leaf and whole plant level have the potential to explain ignition and fire behavior phenomena in live fuels that have been poorly…
Publication Type: Journal Article
The influence of fire history on soil nutrients and vegetation cover in mixed-severity fire regime forests of the eastern Olympic Peninsula, Washington, USA
Year: 2018
The rain shadow forests of the Olympic Peninsula exemplify a mixed-severity fire regime class in the midst of a highly productive landscape where spatial heterogeneity of fire severity may have significant implications for below and aboveground post-fire recovery. The purpose of this study was to quantify the impacts of wildfire on forest soil carbon (C) and nitrogen (N) pools and assess the relationship of pyrogenic carbon (PyC) to soil processes in this mixed-severity ecosystem. We established a 112-year fire chronosequence with nine similar forest stands ranging in time since lastfire (TSF…
Publication Type: Journal Article
Estimating post-fire debris-flow hazards prior to wildfire using a statistical analysis of historical distributions of fire severity from remote sensing data
Year: 2018
Following wildfire, mountainous areas of the western United States are susceptible to debris flow during intense rainfall. Convective storms that can generate debris flows in recently burned areas may occur during or immediately after the wildfire, leaving insufficient time for development and implementation of risk mitigation strategies. We present a method for estimating post-fire debris-flow hazards before wildfire using historical data to define the range of potential fire severities for a given location based on the statistical distribution of severity metrics obtained from remote…
Publication Type: Journal Article