Research Database
Displaying 41 - 60 of 76
Historical Fire–Climate Relationships in Contrasting Interior Pacific Northwest Forest Types
Year: 2017
Describing the climate influences on historical wildland fire will aid managers in planning for future change. This study uses existing historical climate reconstructions and a new fire history from the southern Blue Mountains in eastern Oregon, USA, to: 1) characterize historical fire-climate relationships, and 2) determine if climatic influences on fire differed among dry sites dominated by ponderosa pine (Pinus ponderosa Dougl. ex Laws) and more productive sites with significant older fire intolerant grand fir (Abies grandis [Dougl.] Lindl.) structure.
Publication Type: Journal Article
Efficacy of resource objective wildfires for restoration of ponderosa pine (Pinus ponderosa) forests in northern Arizona
Year: 2017
Current conditions in dry forests of the western United State have given rise to policy mandates for accelerated ecological restoration on U.S. National Forest System and other public lands. In southwestern ponderosa pine (Pinus ponderosa Laws.) forests, mechanized tree thinning and prescribed fire are common restoration treatments but are not acceptable for all sites. Currently there is much interest in managing naturally ignited fires to accomplish restoration objectives but few studies have systematically examined the efficacy of such “resource objective” wildfires for restoring historical…
Publication Type: Journal Article
Emissions from prescribed burning of timber slash piles in Oregon
Year: 2017
Emissions from burning piles of post-harvest timber slash (Douglas-fir) in Grande Ronde, Oregon were sampled using an instrument platform lofted into the plume using a tether-controlled aerostat or balloon. Emissions of carbon monoxide, carbon dioxide, methane, particulate matter (PM2.5), black carbon, ultraviolet absorbing PM, elemental/organic carbon, filter-based metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzodioxins/dibenzofurans (PCDD/PCDF), and volatile organic compounds (VOCs) were sampled to determine emission factors, the amount of pollutant formed per amount…
Publication Type: Journal Article
Forest management scenarios in a changing climate: trade-offs between carbon, timber, and old forest
Year: 2016
Balancing economic, ecological, and social values has long been a challenge in the forests of the Pacific Northwest, where conflict over timber harvest and old-growth habitat on public lands has been contentious for the past several decades. The Northwest Forest Plan, adopted two decades ago to guide management on federal lands, is currently being revised as the region searches for a balance between sustainable timber yields and habitat for sensitive species. In addition, climate change imposes a high degree of uncertainty on future forest productivity, sustainability of timber harvest,…
Publication Type: Journal Article
Recovering lost ground: Effects of soil burn intensity on nutrients and ectomycorrhiza communities of ponderosa pine seedlings
Year: 2016
Fuel accumulation and climate shifts are predicted to increase the frequency of high-severity fires in ponderosa pine (Pinus ponderosa) forests of central Oregon. The combustion of fuels containing large downed wood can result in intense soil heating, alteration of soil properties, and mortality of microbes. Previous studies show ectomycorrhizal fungi (EMF) improve ponderosa seedling establishment after fire but did not compare EMF communities at different levels of soil burn intensity in a field setting. For this study, soil burn intensity effects on nutrients and EMF communities were…
Publication Type: Journal Article
Did the 2002 Hayman Fire, Colorado, USA, Burn with Uncharacteristic Severity?
Year: 2016
There is considerable interest in evaluating whether recent wildfires in dry conifer forests of western North America are burning with uncharacteristic severity—that is, with a severity outside the historical range of variability. In 2002, the Hayman Fire burned an unlogged 3400 ha dry conifer forest landscape in the Colorado Front Range, USA, that had been the subject of previous fire history and forest age structure research. We opportunistically leveraged pre-existing data from this research, in combination with post-fire aerial imagery, to provide insight into whether the Hayman Fire’s…
Publication Type: Journal Article
Evaluating Prescribed Fire Effectiveness Using Permanent Monitoring Plot Data: A Case Study
Year: 2016
Since Euro-American settlement, ponderosa pine forests throughout the western United States have shifted from high fire frequency and open canopy savanna forests to infrequent fire and dense, closed canopy forests. Managers at Zion National Park, USA, reintroduced fire to counteract these changes and decrease the potential for high-severity fires. We analyzed existing permanent monitoring plot data collected between 1995 and 2010 to assess achievement of management objectives related to prescribed fire in ponderosa pine forests. Following first entry fire, ponderosa pine (Pinus ponderosa C.…
Publication Type: Journal Article
Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests
Year: 2016
Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and any potential carbon benefits from treatment may depend on the occurrence of wildfire. We sought to determine how forest treatments alter the effects of stochastic wildfire events on the forest carbon balance. We modeled three…
Publication Type: Journal Article
Burning the legacy? Influence of wildfire reburn on dead wood dynamics in a temperate conifer forest
Year: 2016
Dynamics of dead wood, a key component of forest structure, are not well described for mixed- severity fi re regimes with widely varying fi re intervals. A prominent form of such variation is when two stand- replacing fi res occur in rapid succession, commonly termed an early- seral “reburn.” These events are thought to strongly infl uence dead wood abundance in a regenerating forest, but this hypothesis has scarcely been tested. We measured dead wood following two overlapping wildfi res in coniferdominated forests of the Klamath Mountains, Oregon (USA), to assess whether reburning (15- yr…
Publication Type: Journal Article
Effects of harvest, fire, and pest/pathogen disturbances on the West Cascades ecoregion carbon balance
Year: 2015
Disturbance is a key influence on forest carbon dynamics, but the complexity of spatial and temporal patterns in forest disturbance makes it difficult to quantify their impacts on carbon flux over broad spatial domains.Here we used a time series of Landsat remote sensing images and a climate-driven carbon cycle process model to evaluate carbon fluxes at the ecoregion scale in western Oregon.
Publication Type: Journal Article
Wildland fire emissions, carbon, and climate: Modeling fuel consumption
Year: 2014
Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic process that leads to heat absorbing emissions called greenhouse gas and other aerosol emissions that can impact atmospheric and ecosystem processes, carbon stocks, and land surface reflectance. It is a critical requirement for…
Publication Type: Journal Article
Mapping the daily progression of large wildland fires using MODIS active fire data
Year: 2014
High temporal resolution information on burnt area is needed to improve fire behaviour and emissions models. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly and active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the timing of burnt area for 16 large wildland fires. For each fire, parameters for the kriging model were defined using variogram analysis. The optimal number of observations used to estimate a pixel’s time of burning varied between four and six among the fires studied. The median standard error from…
Publication Type: Journal Article
Latent resilience in ponderosa pine forest: effects of resumed frequent fire
Year: 2013
Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels,…
Publication Type: Journal Article
The relationship of post-fire white ash cover to surface fuel consumption
Year: 2013
White ash results from the complete combustion of surface fuels, making it a logically simple retrospective indicator of surface fuel consumption. However, the strength of this relationship has been neither tested nor adequately demonstrated with field measurements. We measured surface fuel loads and cover fractions of white ash and four other surface materials (green vegetation, brown non-photosynthetic vegetation, black char and mineral soil) immediately before and after eight prescribed fires in four disparate fuelbed types: boreal forest floor, mixed conifer woody slash, mixed conifer…
Publication Type: Journal Article
Pre-wildfire fuel reduction treatments result in more resilient forest structure a decade after wildfire
Year: 2013
Increasing size and severity of wildfires have led to an interest in the effectiveness of forest fuels treatments on reducing fire severity and post-wildfire fuels. Our objective was to contrast stand structure and surface fuel loadings on treated and untreated sites within the 2002 Rodeo–Chediski Fire area. Data from 140 plots on seven paired treated–untreated sites indicated that pre-wildfire treatments reduced fire severity compared with untreated sites. In 2011, coarse woody debris loading (woody material >7.62 cm in diameter) was 257% higher and fine woody debris (woody material <7…
Publication Type: Journal Article
Do carbon offsets work? The role of forest management in greenhouse gas mitigation
Year: 2013
Publication Type: Report
Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition Under Elevated CO2
Year: 2012
The extent to which terrestrial ecosystems can sequester carbon to mitigate climate change is a matter of debate. The stimulation of arbuscular mycorrhizal fungi (AMF) by elevated atmospheric carbon dioxide (CO 2 ) has been assumed to be a major mechanism facilitating soil carbon sequestration by increasing carbon inputs to soil and by protecting organic carbon from decomposition via aggregation. We present evidence from four independent microcosm and field experiments demonstrating that CO 2 enhancement of AMF results in considerable soil carbon losses. Our findings challenge the assumption…
Publication Type: Journal Article
Fuel treatment impacts on estimated wildfire carbon loss from forests in Montana, Oregon, California, and Arizona
Year: 2012
Using forests to sequester carbon in response to anthropogenically induced climate change is being considered across the globe. A recent U.S. executive order mandated that all federal agencies account for sequestration and emissions of greenhouse gases, highlighting the importance of understanding how forest carbon stocks are influenced by wildfire. This paper reports the effects of the most common forest fuel reduction treatments on carbon pools composed of live and dead biomass as well as potential wildfire emissions from six different sites in four western U.S. states. Additionally, we…
Publication Type: Journal Article
Evidence of Enhanced Freezing Damage in Treeline Plants During Six Years of CO 2 Enrichment and Soil Warming
Year: 2012
Climate change and elevated atmospheric CO 2 levels could increase the vulnerability of plants to freezing. We analyzed tissue damage resulting from naturally occurring freezing events in plants from a longterm in situ CO 2 enrichment (+ 200 ppm, 2001-2009) and soil warming (+ 4°C since 2007) experiment at treeline in the Swiss Alps (Stillberg, Davos). Summer freezing events caused damage in several abundant subalpine and alpine plant species in four out of six years between 2005 and 2010. Most freezing damage occurred when temperatures dropped below -1.5°C two to three weeks after snow melt…
Publication Type: Journal Article
Commonalities of Carbon Dioxide Exchange in Semiarid Regions with Monsoon and Mediterranean Climates
Year: 2012
Comparing biosphereatmosphere carbon exchange across monsoon (warm-season rainfall) and Mediterranean (cool-season rainfall) regimes can yield information about the interaction between energy and water limitation. Using data collected from eddy covariance towers over grass and shrub ecosystems in Arizona, USA and Almeria, Spain, we used net ecosystem carbon dioxide exchange (NEE), gross ecosystem production (GEP), and other meteorological variables to examine the effects of the different precipitation seasonality. Considerable crossover behavior occurred between the two rainfall regimes. As…
Publication Type: Journal Article