Research Database
Displaying 81 - 100 of 102
Soil-mediated effects of subambient to increased carbon dioxide on grassland productivity
Year: 2012
Grasslands are structured by climate and soils, and are increasingly affected by anthropogenic changes, including rising atmospheric CO 2 concentrations. CO 2 enrichment can alter grassland ecosystem function both directly and through indirect, soil-specific effects on moisture, nitrogen availability and plant species composition, potentially leading to threshold change in ecosystem properties. Here we show that the increase in aboveground net primary productivity (ANPP) with CO 2 enrichment depends strongly on soil type. We found that the ANPP-CO 2 response of grassland was 2.5× greater on…
Publication Type: Journal Article
Mastication and Prescribed Fire Influences on Tree Mortality and Predicted Fire Behavior in Ponderosa Pine
Year: 2012
The purpose of this study was to provide land managers with information on potential wildfire behavior and tree mortality associated with mastication and masticated/fire treatments in a plantation. Additionally, the effect of pulling fuels away from tree boles before applying fire treatment was studied in relation to tree mortality. Fuel characteristics and tree mortality data were gathered before and after treatments in a 25-year-old ponderosa pine (Pinus ponderosa C. Lawson) plantation. A random block design was used with three treatments plus a control at each of four blocks. Four plots…
Publication Type: Journal Article
The Long-Term Effects of Wildfire and Post-Fire Vegetation on Sierra Nevada Forest Soils
Year: 2012
This paper compares carbon (C) and nutrient contents in soils (Alfisols derived from andesite), forest floor and vegetation in a former fire (1960) and an adjacent forest in the Sagehen Watershed in the Sierra Nevada Mountains of California. Soils from the former fire (now occupied predominantly by Ceanothus velutinus, a nitrogen-fixing shrub) had significantly lower contents of extractable SO42− and P (both Bray and bicarbonate) but significantly greater contents of exchangeable Ca2+ than the adjacent forested site (dominated by Pinus jeffreyii). N data suggested that N fixation had occurred…
Publication Type: Journal Article
Properties affecting the consumption of sound and rotten coarse woody debris in northern Idaho: a preliminary investigation using laboratory fires
Year: 2012
This study evaluates the consumption of coarse woody debris in various states of decay. Samples from a northern Idaho mixed-conifer forest were classified using three different classification methods, ignited with two different ignition methods and consumption was recorded. Intrinsic properties that change with decay were measured including carbon to nitrogen ratio, density, heat content, lignin content, moisture content and surface area-to-volume ratio. Consumption for logs in different stages of decay is reported with characterisation of wood properties. Results indicate very decayed coarse…
Publication Type: Journal Article
Fuel Treatment Effectiveness in California Yellow Pine and Mixed Conifer Forests
Year: 2012
We assessed the effectiveness of forest fuel thinning projects that explicitly removed surface and ladder fuels (all but one were combined mechanical and prescribed fire/pile burn prescriptions) in reducing fire severity and tree mortality in 12 forest fires that burned in eastern and southern California between 2005 and 2011. All treatments and fires occurred in yellow pine or mixed conifer forests, in a variety of landscape conditions. Most fires burned under warm, dry conditions, with moderate to high winds. With few exceptions, fire severity measures (bole char height, scorch and torch…
Publication Type: Journal Article
Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition Under Elevated CO2
Year: 2012
The extent to which terrestrial ecosystems can sequester carbon to mitigate climate change is a matter of debate. The stimulation of arbuscular mycorrhizal fungi (AMF) by elevated atmospheric carbon dioxide (CO 2 ) has been assumed to be a major mechanism facilitating soil carbon sequestration by increasing carbon inputs to soil and by protecting organic carbon from decomposition via aggregation. We present evidence from four independent microcosm and field experiments demonstrating that CO 2 enhancement of AMF results in considerable soil carbon losses. Our findings challenge the assumption…
Publication Type: Journal Article
Does Wood Bioenergy Increase Carbon Stocks in Forests?
Year: 2012
Wood bioenergy is touted as carbon neutral because biological regrowth recaptures the carbon released in energy production. However, some argue that using wood as an energy feedstock will result in decreased forest stocks and thereby a net reduction of carbon sequestered by forests. Such arguments fail to recognize that increased demand for wood bioenergy could increase stocks of wood, a renewable resource. We address the carbon neutrality question using a dynamic optimization forest management model to examine the effect of increasing or decreasing wood bioenergy demand on an existing forest…
Publication Type: Journal Article
Timing of carbon emissions from global forest clearance
Year: 2012
Land-use change, primarily from conventional agricultural expansion and deforestation, contributes to approximately 17% of global greenhouse-gas emissions. The fate of cleared wood and subsequent carbon storage as wood products, however, has not been consistently estimated, and is largely ignored or oversimplified by most models estimating greenhouse-gas emissions from global land-use conversion. Here, we estimate the fate of cleared wood and timing of atmospheric carbon emissions for 169 countries. We show that 30 years after forest clearance the percentage of carbon stored in wood products…
Publication Type: Journal Article
Long and Short-Term Effects of Fire on Soil Charcoal of a Conifer Forest in Southwest Oregon
Year: 2012
In 2002, the Biscuit Wildfire burned a portion of the previously established, replicated conifer unthinned and thinned experimental units of the Siskiyou Long-Term Ecosystem Productivity (LTEP) experiment, southwest Oregon. Charcoal C in pre and post-fire O horizon and mineral soil was quantified by physical separation and a peroxide-acid digestion method. The abrupt, short-term fire event caused O horizon charcoal C to increase by a factor of ten to >200 kg C ha−1. The thinned wildfire treatment produced less charcoal C than unthinned wildfire and thinned prescribed fire treatments. The…
Publication Type: Journal Article
Commonalities of Carbon Dioxide Exchange in Semiarid Regions with Monsoon and Mediterranean Climates
Year: 2012
Comparing biosphereatmosphere carbon exchange across monsoon (warm-season rainfall) and Mediterranean (cool-season rainfall) regimes can yield information about the interaction between energy and water limitation. Using data collected from eddy covariance towers over grass and shrub ecosystems in Arizona, USA and Almeria, Spain, we used net ecosystem carbon dioxide exchange (NEE), gross ecosystem production (GEP), and other meteorological variables to examine the effects of the different precipitation seasonality. Considerable crossover behavior occurred between the two rainfall regimes. As…
Publication Type: Journal Article
Evidence of Enhanced Freezing Damage in Treeline Plants During Six Years of CO 2 Enrichment and Soil Warming
Year: 2012
Climate change and elevated atmospheric CO 2 levels could increase the vulnerability of plants to freezing. We analyzed tissue damage resulting from naturally occurring freezing events in plants from a longterm in situ CO 2 enrichment (+ 200 ppm, 2001-2009) and soil warming (+ 4°C since 2007) experiment at treeline in the Swiss Alps (Stillberg, Davos). Summer freezing events caused damage in several abundant subalpine and alpine plant species in four out of six years between 2005 and 2010. Most freezing damage occurred when temperatures dropped below -1.5°C two to three weeks after snow melt…
Publication Type: Journal Article
Carbon Dynamics of Forests in Washington, USA: 21st Century Projections Based on Climate-Driven Changes in Fire Regimes
Year: 2012
During the 21st century, climate-driven changes in fire regimes will be a key agent of change in forests of the U.S. Pacific Northwest (PNW). Understanding the response of forest carbon (C) dynamics to increases in fire will help quantify limits on the contribution of forest C storage to climate change mitigation and prioritize forest types for monitoring C storage and fire management to minimize C loss. In this study, we used projections of 21st century area burned to explore the consequences of changes in fire regimes on C dynamics in forests of Washington State. We used a novel empirical…
Publication Type: Journal Article
Surface fuel treatments in young, regenerating stands affect wildfire severity in a mixed conifer forest, eastside Cascade Range, Washington, USA
Year: 2012
Previous studies have debated the flammability of young regenerating stands, especially those in a matrix of mature forest, and no consensus has emerged as to whether young stands are inherently prone to high severity wildfire. This topic has recently been addressed using spatial imagery, and weak inferences were made given the scale mismatch between the coarse resolution of spatial imagery and the fine resolution of mechanisms driving fire severity. We collected empirical stand and fire-severity data from 44 regenerating stands that are interspersed in mature, mid-elevation forests in the…
Publication Type: Journal Article
Short- and Long-term Effects of Fire on Carbon in US Dry Temperate Forest Systems
Year: 2011
Forests sequester carbon from the atmosphere, and in so doing can mitigate the effects of climate change. Fire is a natural disturbance process in many forest systems that releases carbon back to the atmosphere. In dry temperate forests, fires historically burned with greater frequency and lower severity than they do today. Frequent fires consumed fuels on the forest floor and maintained open stand structures. Fire suppression has resulted in increased understory fuel loads and tree density; a change in structure that has caused a shift from low- to high-severity fires. More severe fires,…
Publication Type: Journal Article
Assessing Fuel Treatment Effectiveness After the Tripod Complex Fires
Year: 2011
Over the past 50 years, wildfire frequency and area burned have increased in the dry forests of western North America. To help reduce high surface fuel loads and potential wildfire severity, a variety of fuel treatments are applied. In spite of the common use of these management practices, there have been relatively few opportunities to quantitatively measure their efficacy in wildfires. That changed with the 2006 Tripod Complex fires in the Okanogan-Wenatchee National Forest in Washington—one of the largest fire events in Washington state over the past five decades. A serendipitous…
Publication Type: Report
Fuelwood Characteristics of Northwestern Conifers and Hardwoods (Updated)
Year: 2010
This report is an update of the original publication by Oregon State University in 1987 (Resource Bulletin 60). According to agreements, researchers at the U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station and the Juneau Economic Development Council worked with Oregon State University to update this reference concerning wood energy properties. The fuelwood characteristics were reformatted and presented in tabular form, and a literature review was conducted to check for additional information published since 1987. This report provides fuelwood values for 34…
Publication Type: Report
FOFEM: The First-Order Fire Effects Model Adapts to the 21st Century
Year: 2009
Technology is playing an increasingly pivotal role in the efficiency and effectiveness of fire management. The First Order Fire Effects Model (FOFEM) is a widely used computer application that predicts the immediate or ‘first-order’ effects of fire: fuel consumption, tree mortality, emissions, and soil heating. FOFEM’s simple operation and comprehensive features have made it a workhorse for fire and resource professionals who need to be able to predict, assess and plan for fire’s effects. Over the last decade FOFEM has undergone several upgrades as developers continue to improve function and…
Publication Type: Report
The Forest, the Fire and the Fungi: Studying the Effects of Prescribed Burning on Mycorrhizal Fungi in Crater Lake National Park
Year: 2009
A first-of-its-kind study, conducted in a forest of old-growth ponderosa pine and white fir in Oregon’s Crater Lake National Park, explored the relationships among seasonal prescribed burning, an array of soil attributes, and mycorrhizal fungal fruiting patterns. This three-fold approach not only made the study unique, but also enabled researchers to separate the effects of fire treatment from the effects of soil attributes on fungal fruiting patterns. The study’s site encompassed three different prescribed burn treatments—applied in the early spring, late spring, and fall of 2002—as well as…
Publication Type: Report
Has Fire Suppression Increased the Amount of Carbon Stored in Western US Forests?
Year: 2008
Active 20th century fire suppression in western US forests, and a resulting increase in stem density, is thought to account for a significant fraction of the NorthAmerican carbon sink. We compared California forest inventories from the 1930s with inventories from the 1990s to quantify changes in aboveground biomass. Stem density in mid-montane conifer forests increased by 34%, while live aboveground carbon stocks decreased by 26%. Increased stem density reflected an increase in the number of small trees and a net loss of large trees. Large trees contain a disproportionate amount of carbon,…
Publication Type: Journal Article
Four centuries of soil carbon and nitrogen change after stand-replacing fire in a forest landscape in the western Cascade range of Oregon
Year: 2008
Episodic stand-replacing wildfire is a significant disturbance in mesic and moist Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests of the Pacific Northwest. We studied 24 forest stands with known fire histories in the western Cascade Range in Oregon to evaluate long-term impacts of stand-replacing wildfire on carbon (C) and nitrogen (N) pools and dynamics within the forest floor (FF, Oe and Oa horizons) and the mineral soil (0–10 cm). Twelve of our stands burned approximately 150 years ago (“young”), and the other 12 burned approximately 550 years ago (“old”). Forest floor mean C…
Publication Type: Journal Article