Research Database
Displaying 81 - 100 of 140
Prescribed fire regimes subtly alter ponderosa pine forest plant community structure
Year: 2019
Prescribed fire is an active management tool used to address wildfire hazard and ecological concerns associated with fire exclusion and suppression over the past century. Despite widespread application in the United States, there is considerable inconsistency and lack of information regarding the extent to which specific outcomes are achieved and under what prescribed fire regimes, particularly in regard to ecological goals related to plant community structure. We quantify differences and patterns in plant functional group abundance, species richness and diversity, and other key forest…
Publication Type: Journal Article
Influences of fire–vegetation feedbacks and post‐fire recovery rates on forest landscape vulnerability to altered fire regimes
Year: 2018
In the context of ongoing climatic warming, forest landscapes face increasing risk of conversion to non‐forest vegetation through alteration of their fire regimes and their post‐fire recovery dynamics. However, this pressure could be amplified or dampened, depending on how fire‐driven changes to vegetation feed back to alter the extent or behaviour of subsequent fires. Here we develop a mathematical model to formalize understanding of how fire–vegetation feedbacks and the time to forest recovery following high‐severity (i.e. stand‐replacing) fire affect the extent and stability of forest…
Publication Type: Journal Article
Expanding Our Understanding of Forest Structural Restoration Needs in the Pacific Northwest
Year: 2018
Ecological departure, or how much landscapes have changed from a natural range of variation (NRV), has become a key metric in forest planning and restoration efforts. In this study we define forest restoration need as the specific change in structural stage abundance necessary to move landscapes into the NRV. While most restoration projects in the forested ecosystems of the Pacific Northwest, USA (Oregon and Washington) have embraced this paradigm, our understanding of what treatments to apply where, when, and at what magnitude is evolving and continues to be refined. We build on a body of…
Publication Type: Journal Article
Land surveys show regional variability of historical fire regimes and dry forest structure of the western United States
Year: 2018
An understanding of how historical fire and structure in dry forests (ponderosa pine, dry mixed conifer) varied across the western United States remains incomplete. Yet, fire strongly affects ecosystem services, and forest restoration programs are underway. We used General Land Office survey reconstructions from the late 1800s across 11 landscapes covering ~1.9 million ha in four states to analyze spatial variation in fire regimes and forest structure. We first synthesized the state of validation of our methods using 20 modern validations, 53 historical cross‐validations, and corroborating…
Publication Type: Journal Article
Regional and local controls on historical fire regimes of dry forests and woodlands in the Rogue River Basin, Oregon, USA
Year: 2018
Fire regimes structure plant communities worldwide with regional and local factors, including anthropogenic fire management, influencing fire frequency and severity. Forests of the Rogue River Basin in Oregon, USA, are both productive and fire-prone due to ample winter precipitation and summer drought; yet management in this region is strongly influenced by forest practices that depend on fire exclusion. Regionally, climate change is increasing fire frequency, elevating the importance of understanding historically frequent-fire regimes. We use cross-dated fire-scars to characterize historical…
Publication Type: Journal Article
Prescribed fire regimes subtly alter ponderosa pine forest plant community structure
Year: 2018
Prescribed fire is an active management tool used to address wildfire hazard and ecological concerns associated with fire exclusion and suppression over the past century. Despite widespread application in the United States, there is considerable inconsistency and lack of information regarding the extent to which specific outcomes are achieved and under what prescribed fire regimes, particularly in regard to ecological goals related to plant community structure. We quantify differences and patterns in plant functional group abundance, species richness and diversity, and other key forest…
Publication Type: Journal Article
Social Vulnerability to Climate Change in Temperate Forest Areas: New Measures of Exposure, Sensitivity, and Adaptive Capacity
Year: 2018
Human communities in forested areas that are expected to experience climate-related changes have received little attention in the scholarly literature on vulnerability assessment. Many communities rely on forest ecosystems to support their social and economic livelihoods. Climate change could alter these ecosystems. We developed a framework that measures social vulnerability to slow-onset climate-related changes in forest ecosystems. We focused on temperate forests because this biome is expected to experience dramatic change in the coming years, with adverse effects for humans. We advance…
Publication Type: Journal Article
Human-related ignitions concurrent with high winds promote large wildfires across the USA
Year: 2018
Large wildfires (>40 ha) account for the majority of burned area across the contiguous United States (US) and appropriate substantial suppression resources. A variety of environmental and social factors influence wildfire growth and whether a fire overcomes initial attack efforts and becomes a large wildfire. However, little is known about how these factors differ between lightning-caused and human-caused wildfires. This study examines differences in temperature, vapour pressure deficit, fuel moisture and wind speed for large and small lightning- and human-caused wildfires during the…
Publication Type: Journal Article
Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity
Year: 2018
Fire frequency is changing globally and is projected to affect the global carbon cycle and climate. However, uncertainty about how ecosystems respond to decadal changes in fire frequency makes it difficult to predict the effects of altered fire regimes on the carbon cycle; for instance, we do not fully understand the long-term effects of fire on soil carbon and nutrient storage, or whether fire-driven nutrient losses limit plant productivity. Here we analyse data from 48 sites in savanna grasslands, broadleaf forests and needleleaf forests spanning up to 65 years, during which time the…
Publication Type: Journal Article
Influence of landscape structure, topography, and forest type on spatial variation in historical fire regimes, Central Oregon, USA
Year: 2018
Context In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes. Objectives To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon. Methods We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with…
Publication Type: Journal Article
The nature of the beast: examining climate adaptation options in forests with stand‐replacing fire regimes
Year: 2018
Building resilience to natural disturbances is a key to managing forests for adaptation to climate change. To date, most climate adaptation guidance has focused on recommendations for frequent‐fire forests, leaving few published guidelines for forests that naturally experience infrequent, stand‐replacing wildfires. Because most such forests are inherently resilient to stand‐replacing disturbances, and burn severity mosaics are largely indifferent to manipulations of stand structure (i.e., weather‐driven, rather than fuel‐driven fire regimes), we posit that pre‐fire climate adaptation options…
Publication Type: Journal Article
Advancing Dendrochronological Studies of Fire in the United States
Year: 2018
Dendroecology is the science that dates tree rings to their exact calendar year of formation to study processes that influence forest ecology (e.g., Speer 2010 [1], Amoroso et al., 2017 [2]). Reconstruction of past fire regimes is a core application of dendroecology, linking fire history to population dynamics and climate effects on tree growth and survivorship. Since the early 20th century when dendrochronologists recognized that tree rings retained fire scars (e.g., Figure 1), and hence a record of past fires, they have conducted studies worldwide to reconstruct [2] the historical range and…
Publication Type: Journal Article
Assessing vulnerabilities and adapting to climate change in northwestern U.S. forests
Year: 2017
Multiple climate change vulnerability assessments in the Pacific Northwest region of the USA provide the scientific information needed to begin adaptation in forested landscapes. Adaptation options developed by resource managers in conjunction with these assessments, newly summarized in the Climate Change Adaptation Library of the Western United States, provide an extensive choice of peer-reviewed climate-smart management strategies and tactics. More adaptation options are available for vegetation than for any other resource category, allowing vegetation management to be applied across a…
Publication Type: Journal Article
Long-Term Effects of Burn Season and Frequency on Ponderosa Pine Forest Fuels and Seedlings
Year: 2017
Prescribed fire is widely applied in western US forests to limit future fire severity by reducing tree density, fuels, and excessive seedlings. Repeated prescribed burning attempts to simulate historical fire regimes in frequent-fire forests, yet there is limited long-term information regarding optimal burn season and frequency. In addition, burns are operationally feasible only in the spring and late fall, largely outside the historical wildfire season. This study quantifies the effect of seasonal reburns on woody surface fuels, forest floor fuels, and understory tree regeneration abundance…
Publication Type: Journal Article
Who among the elderly is most vulnerable to exposure and health risks of PM2.5 from wildfire smoke?
Year: 2017
Wildfires burn over 7 million US acres annually, according to the US Forest Service. Little is known regarding which subpopulations are more vulnerable to health risks from wildfire smoke, including fine particles. We estimated exposure to fine particles specifically from wildfires and associations between wildfire-specific fine particles and respiratory hospital admissions for subpopulations > 65 years in the Western US (2004-2009). Higher fractions of Blacks and people in urban counties and in California are exposed to > 1 smoke wave (high-pollution episodes from wildfire smoke)…
Publication Type: Journal Article
Accommodating mixed-severity fire to restore and maintain ecosystem integrity with a focus on the Sierra Nevada of California, USA
Year: 2017
Existing fire policy encourages the maintenance of ecosystem integrity in fire management, yet this is difficult to implement on lands managed for competing economic, human safety, and air quality concerns. We discuss a fire management approach in the mid-elevations of the Sierra Nevada, California, USA, that may exemplify similar challenges in other fire-adapted regions of the western USA. We also discuss how managing for pyrodiversity through mixed-severity fires can promote ecosystem integrity in Sierran mixed conifer and ponderosa pine (Pinus ponderosa Laws) forests.
Publication Type: Journal Article
Tamm Review: Shifting global fire regimes: Lessons from reburns and research needs
Year: 2017
Across the globe, rising temperatures and altered precipitation patterns have caused persistent regional droughts, lengthened fire seasons, and increased the number of weather-driven extreme fire events. Because wildfires currently impact an increasing proportion of the total area burned, land managers need to better understand reburns – in which previously burned areas can modify the patterns and severity of subsequent fires. For example, knowing how long past fire boundaries can function as barriers to fire spread may empower decision-makers to manage some wildfires as large-scale fuel…
Publication Type: Journal Article
Quantifying the effect of elevation and aspect on fire return intervals in the Canadian Rocky Mountains
Year: 2017
The effect of topography on wildfire distribution in the Canadian Rockies has been the subject of debate. We suspect the size of the study area, and the assumption fire return intervals are distributed as a Weibull distribution used in many previous studies may have obscured the real effect of topography on these fire-regulated ecosystems. The objective of this study was to quantify the effects of elevation, aspect, slope and dominant species on probabilities of burning. The study area covered three natural subregions: Subalpine, Montane, and Upper Foothills of the Rocky Mountains of southern…
Publication Type: Journal Article
Climate changes and wildfire alter vegetation of Yellowstone National Park, but forest cover persists
Year: 2017
We present landscape simulation results contrasting effects of changing climates on forest vegetation and fire regimes in Yellowstone National Park, USA, by mid-21st century. We simulated potential changes to fire dynamics and forest characteristics under three future climate projections representing a range of potential future conditions using the FireBGCv2 model. Under the future climate scenarios with moderate warming (>2°C) and moderate increases in precipitation (3–5%), model simulations resulted in 1.2–4.2 times more burned area, decreases in forest cover (10–44%), and reductions in…
Publication Type: Journal Article
Socioecological transitions trigger fire regime shifts and modulate fire–climate interactions in the Sierra Nevada, USA, 1600–2015 CE
Year: 2016
Large wildfires in California cause significant socioecological impacts, and half of the federal funds for fire suppression are spent each year in California. Future fire activity is projected to increase with climatechange, but predictions are uncertain because humans can modulate or even override climatic effects on fire activity. Here we test the hypothesis that changes in socioecological systems from the NativeAmerican to the current period drove shifts in fire activity and modulated fire–climate relationships in the Sierra Nevada. We developed a 415-y record (1600–2015 CE) of fire…
Publication Type: Journal Article