Research Database
Displaying 81 - 100 of 132
Effectiveness of fuel treatments for mitigating wildfire risk and sequestering forest carbon: A case study in the Lake Tahoe Basin
Year: 2014
Fuel-reduction treatments are used extensively to reduce wildfire risk and restore forest diversity and function. In the near future, increasing regulation of carbon (C) emissions may force forest managers to balance the use of fuel treatments for reducing wildfire risk against an alternative goal of C sequestration. The objective of this study was to evaluate how long-term fuel treatments mitigate wildfires and affect forest C. For the Lake Tahoe Basin in the central Sierra Nevada, USA, fuel treatment efficiency was explored with a landscape-scale simulation model, LANDIS-II, using five fuel…
Publication Type: Journal Article
Mapping the daily progression of large wildland fires using MODIS active fire data
Year: 2014
High temporal resolution information on burnt area is needed to improve fire behaviour and emissions models. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly and active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the timing of burnt area for 16 large wildland fires. For each fire, parameters for the kriging model were defined using variogram analysis. The optimal number of observations used to estimate a pixel’s time of burning varied between four and six among the fires studied. The median standard error from…
Publication Type: Journal Article
The influence of experimental wind disturbance on forest fuels and fire characteristics
Year: 2014
Current theory in disturbance ecology predicts that extreme disturbances in rapid succession can lead to dramatic changes in species composition or ecosystem processes due to interactions among disturbances. However, the extent to which less catastrophic, yet chronic, disturbances such as wind damage and fire interact is not well studied. In this study, we simulated wind-caused gaps in a Pinus taeda forest in the Piedmont of north-central Georgia using static winching of trees to examine how wind damage may alter fuel characteristics and the behavior of subsequent prescribed fire. We found…
Publication Type: Journal Article
Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States
Year: 2014
Seasonal changes in the climatic potential for very large wildfires (VLWF ≥ 50,000 ac ~ 20,234 ha) across the western contiguous United States are projected over the 21st century using generalized linear models and downscaled climate projections for two representative concentration pathways (RCPs). Significant (p ≤ 0.05) increases in VLWF probability for climate of the mid-21st century (2031–2060) relative to contemporary climate are found, for both RCP 4.5 and 8.5. The largest differences are in the Eastern Great Basin, Northern Rockies, Pacific Northwest, Rocky Mountains, and Southwest.…
Publication Type: Journal Article
Fuel treatments and landform modify landscape patterns of burn severity in an extreme fire event
Year: 2014
Under a rapidly warming climate, a critical management issue in semiarid forests of western North America is how to increase forest resilience to wildfire. We evaluated relationships between fuel reduction treatments and burn severity in the 2006 Tripod Complex fires, which burned over 70 000 ha of mixed-conifer forests in the North Cascades range of Washington State and involved 387 past harvest and fuel treatment units. A secondary objective was to investigate other drivers of burn severity including landform, weather, vegetation characteristics, and a recent mountain pine beetle outbreak.…
Publication Type: Journal Article
Mapping day-of-burning with coarse-resolution satellite fire-detection data
Year: 2014
Evaluating the influence of observed daily weather on observed fire-related effects (e.g. smoke production, carbon emissions and burn severity) often involves knowing exactly what day any given area has burned. As such, several studies have used fire progression maps – in which the perimeter of an actively burning fire is mapped at a fairly high temporal resolution – or MODIS satellite data to determine the day-of-burning, thereby allowing an evaluation of the influence of daily weather. However, fire progression maps have many caveats, the most substantial being that they are rarely mapped…
Publication Type: Journal Article
Wildland fire emissions, carbon, and climate: Modeling fuel consumption
Year: 2014
Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic process that leads to heat absorbing emissions called greenhouse gas and other aerosol emissions that can impact atmospheric and ecosystem processes, carbon stocks, and land surface reflectance. It is a critical requirement for…
Publication Type: Journal Article
Relationships between climate and macroscale area burned in the western United States
Year: 2013
Increased wildfire activity (e.g. number of starts, area burned, fire behaviour) across the western United States in recent decades has heightened interest in resolving climate–fire relationships. Macroscale climate–fire relationships were examined in forested and non-forested lands for eight Geographic Area Coordination Centers in the western United States, using area burned derived from the Monitoring Trends in Burn Severity dataset (1984–2010). Fire-specific biophysical variables including fire danger and water balance metrics were considered in addition to standard climate variables of…
Publication Type: Journal Article
Climate Change Quarterly: Summer 2013
Year: 2013
A historical record of Pacific Northwest (defined here as west of the Cascade Mountains in Washington and Oregon) heat waves is identified using the U.S. Historical Climate Network, version 2, daily data (1901–2009). Both daytime and nighttime events are examined, defining a heat wave as three consecutive days above the 99th percentile for the maximum and minimum temperature anomalies separately. Although the synoptic characteristics of the daytime and nighttime heat events are similar, they do indicate some differences between the two types of events. Most notable is a stronger influence of…
Publication Type: Report
The merits of prescribed fire outweigh potential carbon emission effects
Year: 2013
A White Paper developed by Association for Fire Ecology, International Association of Wildland Fire, Tall Timbers Research Station, and The Nature Conservancy.While North American ecosystems vary widely in their ecology and natural historical fire regimes, they are unified in benefitting from prescribed fire when judiciously applied with the goal of maintaining and restoring native ecosystem composition, structure, and function. On a modern landscape in which historical fire regimes cannot naturally occur due to fuel load build-up and resulting public safety concerns, the cornerstone…
Publication Type: Report
The relationship of post-fire white ash cover to surface fuel consumption
Year: 2013
White ash results from the complete combustion of surface fuels, making it a logically simple retrospective indicator of surface fuel consumption. However, the strength of this relationship has been neither tested nor adequately demonstrated with field measurements. We measured surface fuel loads and cover fractions of white ash and four other surface materials (green vegetation, brown non-photosynthetic vegetation, black char and mineral soil) immediately before and after eight prescribed fires in four disparate fuelbed types: boreal forest floor, mixed conifer woody slash, mixed conifer…
Publication Type: Journal Article
Analysis of Meteorological Conditions for the Yakima Smoke Intrusion Case Study, 28 September 2009
Year: 2013
On 28 September 2009, the Naches Ranger District on the Okanogan-Wenatchee National Forest in south-central Washington State ignited an 800-ha prescribed fire. Later that afternoon, elevated PM2.5 concentrations and visible smoke were reported in Yakima, Washington, about 40 km east of the burn unit. The U.S. National Weather Service forecast for the day had predicted good dispersion conditions and winds that would carry the smoke to the less populated area north of Yakima. We undertook a case study of this event to determine whether conditions leading to the intrusion of the smoke plume into…
Publication Type: Report
Do carbon offsets work? The role of forest management in greenhouse gas mitigation
Year: 2013
As forest carbon offset projects become more popular, professional foresters are providing their expertise to support them. But when several members of the Society of American Foresters questioned the science and assumptions used to design the projects, the organization decided to convene a task force to examine whether these projects can provide the intended climate benefits. The report details reasons to look for other solutions to greenhouse gas emission challenges. After synthesizing the latest available science, the authors challenge the underlying assumptions used to establish most…
Publication Type: Report
Estimating Critical Climate - Driven Thresholds in Landscape Dynamics Using Spatial Simulation Modeling: Climate Change Tipping Points in Fire Management
Year: 2013
Climate projections for the next 20-50 years forecast higher temperatures and variable precipitation for many landscapes in the western United States. Climate changes may cause or contribute to threshold shifts, or tipping points, where relatively small shifts in climate result in large, abrupt, and persistent changes in landscape patterns and fire regimes. Rather than simulate potential climate-fire interactions using future climate data derived from Global Climate Models (GCMs), we developed sets of progressively warmer and drier or wetter climate scenarios that span and exceed the range of…
Publication Type: Report
Commonalities of Carbon Dioxide Exchange in Semiarid Regions with Monsoon and Mediterranean Climates
Year: 2012
Comparing biosphereatmosphere carbon exchange across monsoon (warm-season rainfall) and Mediterranean (cool-season rainfall) regimes can yield information about the interaction between energy and water limitation. Using data collected from eddy covariance towers over grass and shrub ecosystems in Arizona, USA and Almeria, Spain, we used net ecosystem carbon dioxide exchange (NEE), gross ecosystem production (GEP), and other meteorological variables to examine the effects of the different precipitation seasonality. Considerable crossover behavior occurred between the two rainfall regimes. As…
Publication Type: Journal Article
Soil-mediated effects of subambient to increased carbon dioxide on grassland productivity
Year: 2012
Grasslands are structured by climate and soils, and are increasingly affected by anthropogenic changes, including rising atmospheric CO 2 concentrations. CO 2 enrichment can alter grassland ecosystem function both directly and through indirect, soil-specific effects on moisture, nitrogen availability and plant species composition, potentially leading to threshold change in ecosystem properties. Here we show that the increase in aboveground net primary productivity (ANPP) with CO 2 enrichment depends strongly on soil type. We found that the ANPP-CO 2 response of grassland was 2.5× greater on…
Publication Type: Journal Article
Carbon Dynamics of Forests in Washington, USA: 21st Century Projections Based on Climate-Driven Changes in Fire Regimes
Year: 2012
During the 21st century, climate-driven changes in fire regimes will be a key agent of change in forests of the U.S. Pacific Northwest (PNW). Understanding the response of forest carbon (C) dynamics to increases in fire will help quantify limits on the contribution of forest C storage to climate change mitigation and prioritize forest types for monitoring C storage and fire management to minimize C loss. In this study, we used projections of 21st century area burned to explore the consequences of changes in fire regimes on C dynamics in forests of Washington State. We used a novel empirical…
Publication Type: Journal Article
Estimating Consumption and Remaining Carbon in Burned Slash Piles
Year: 2012
Fuel reduction treatments to reduce fire risk have become commonplace in the fire adapted forests of western North America. These treatments generate significant woody debris, or slash, and burning this material in piles is a common and inexpensive approach to reducing fuel loads. Although slash pile burning is a common practice, there is little information on consumption or even a common methodology for estimating consumption. As considerations of carbon storage and emissions from forests increase, better means of quantifying burn piles are necessary. This study uses two methods, sector…
Publication Type: Journal Article
Carbon Outcomes from Fuels Treatment and Bioenergy Production in a Sierra Nevada Forest
Year: 2012
In temperate conifer forests of the Western USA, there is active debate whether fuels reduction treatments and bioenergy production result in decreased carbon emissions and increased carbon sequestration compared to a no-action alternative. To address this debate over net carbon stocks, we performed a carbon life-cycle analysis on data from a fuels reduction treatment in a temperate, dry conifer forest in the northern Sierra Nevada of California, USA. The analysis tracks the net ecosystem carbon balance over 50 years for two scenarios (1) fuels reduction treatment combined with bioenergy…
Publication Type: Journal Article
Climatic, Landform, Microtopographic, and Overstory Canopy Controls of Tree Invasion in a Subalpine Meadow Landscape, Oregon Cascades, USA
Year: 2012
Tree invasions have been documented throughout Northern Hemisphere high elevation meadows, as well as globally in many grass and forb-dominated ecosystems. Tree invasions are often associated with large-scale changes in climate or disturbance regimes, but are fundamentally driven by regeneration processes influenced by interactions between climatic, topographic, and biotic factors at multiple spatial scales. The purpose of this research was to quantify spatiotemporal patterns of meadow invasion; and how climate, larger landforms, topography, and overstory trees have interactively influenced…
Publication Type: Journal Article