Research Database
Displaying 1 - 3 of 3
Not all Fuel-Reduction Treatments Degrade Biocrusts: Herbicides Cause Mostly Neutral to Positive Effects on Cover of Biocrusts
Year: 2019
In response to increasing fire, fuel-reduction treatments are being used to minimize large fire risk. Although biocrusts are associated with reduced cover of fire-promoting, invasive grasses, the impact of fuel-reduction treatments on biocrusts is poorly understood. We use data from a long-term experiment, the Sagebrush Steppe Treatment Evaluation Project, testing the following fuel-reduction treatments: mowing, prescribed fire, and the use of two herbicides: one commonly used to reduce shrub cover, tebuthiuron, and one commonly used to combat cheatgrass, imazapic. Looking at sites with high…
Publication Type: Journal Article
Is fire exclusion in mountain big sagebrush communities prudent? Soil nutrient, plant diversity and arthropod response to burning.
Year: 2014
Fire has largely been excluded from many mountain big sagebrush communities. Managers are reluctant to reintroduce fire, especially in communities without significant conifer encroachment, because of the decline in sagebrush-associated wildlife. Given this management direction, a better understanding of fire exclusion and burning effects is needed. We compared burned to unburned plots at six sites in Oregon. Soil nutrient availability generally increased with burning. Plant diversity increased with burning in the first post-burn year, but decreased by the third post-burn year. Burning altered…
Publication Type: Journal Article
Hydrologic and erosion responses to wildfire along the rangeland-xeric forest continuum in the western US: a review and model of hydrologic vulnerability
Year: 2014
The recent increase in wildfire activity across the rangeland–xeric forest continuum in the western United States has landscape-scale consequences in terms of runoff and erosion. Concomitant cheatgrass (Bromus tectorum L.) invasions, plant community transitions and a warming climate in recent decades along grassland–shrubland–woodland–xeric forest transitions have promoted frequent and large wildfires, and continuance of the trend appears likely if warming climate conditions prevail. These changes potentially increase overall hydrologic vulnerability by spatially and temporally increasing…
Publication Type: Journal Article