Research Database
Displaying 1 - 9 of 9
Repeated fuel treatments fall short of fire-adapted regeneration objectives in a Sierra Nevada mixed conifer forest, USA
Year: 2024
Fire exclusion over the last two centuries has driven a significant fire deficit in the forests of western North America, leading to widespread changes in the composition and structure of these historically fire-adapted ecosystems. Fuel treatments have been increasingly applied over the last few decades to mitigate fire hazard, yet it is unclear whether these fuel-focused treatments restore the fire-adapted conditions and species that will allow forests to persist into the future. A vital prerequisite of restoring fire-adaptedness is ongoing establishment of fire-tolerant tree species, and…
Publication Type: Journal Article
Unlocking the potential of Airborne LiDAR for direct assessment of fuel bulk density and load distributions for wildfire hazard mapping
Year: 2024
Large-scale mapping of fuel load and fuel vertical distribution is essential for assessing fire danger, setting strategic goals and actions, and determining long-term resource needs. The Airborne LiDAR system can fulfil such goal by accurately capturing the three-dimensional arrangement of vegetation at regional and national scales. We developed a novel method to estimate multiple metrics of fuel load and vertical bulk density distribution for any type of vegetation. The approach uses Beer-Lambert law for inverting the ALS point cloud into vertical plant area density profiles, which are…
Publication Type: Journal Article
Forest structural complexity and ignition pattern influence simulated prescribed fire effects
Year: 2024
Forest structural characteristics, the burning environment, and the choice of ignition pattern each influence prescribed fire behaviors and resulting fire effects; however, few studies examine the influences and interactions of these factors. Understanding how interactions among these drivers can influence prescribed fire behavior and effects is crucial for executing prescribed fires that can safely and effectively meet management objectives. To analyze the interactions between the fuels complex and ignition patterns, we used FIRETEC, a three-dimensional computational fluid dynamics fire…
Publication Type: Journal Article
Accelerated forest restoration may benefit spotted owls through landscape complementation
Year: 2024
Animals often rely on the presence of multiple, spatially segregated cover types to satisfy their ecological needs; the juxtaposition of these cover types is called landscape complementation. In ecosystems that have been homogenized because of human land use, such as fire-suppressed forests, management activities have the potential to increase the heterogeneity of cover types and, therefore, landscape complementation. We modeled changes to California spotted owl (Strix occidentalis occidentalis) nesting/roosting habitat, foraging habitat and habitat co-occurrence (i.e. landscape…
Publication Type: Journal Article
Ladder fuels rather than canopy volumes consistently predict wildfire severity even in extreme topographic-weather conditions
Year: 2024
Drivers of forest wildfire severity include fuels, topography and weather. However, because only fuels can be actively managed, quantifying their effects on severity has become an urgent research priority. Here we employed GEDI spaceborne lidar to consistently assess how pre-fire forest fuel structure affected wildfire severity across 42 California wildfires between 2019–2021. Using a spatial-hierarchical modeling framework, we found a positive concave-down relationship between GEDI-derived fuel structure and wildfire severity, marked by increasing severity with greater fuel loads until a…
Publication Type: Journal Article
How does forest recovery following moderate-severity fire influence effects of subsequent wildfire in mixed-conifer forests?
Year: 2018
Given regional increases in fire activity in western North American forests, understanding how fire influences the extent and effects of subsequent fires is particularly relevant. Remotely sensed estimates of fire effects have allowed for spatial portioning into different severity categories based on the degree of fire-caused vegetation change. Fire effects between minimal overstory tree mortality (< 20%) and complete (or nearly complete) overstory tree mortality (> 95%) are often lumped into a single category referred to as moderate severity. In this paper, we investigated how burned…
Publication Type: Journal Article
A 35,000 yr fire history from the Oregon Coast Range, USA
Year: 2018
We extend a published 9000 yr fire history record from Little Lake, in the Oregon Coast Range, to 35,000 yr and compare it with the established pollen record from the site. The fire history is based on a high-resolution analysis of charcoal preserved in lake sediments, providing a fire history record that spans the Last Glacial Maximum in North America. The data enabled us to address questions regarding the interactions between large-scale climate changes associated with the shift from glacial to interglacial conditions and the accompanying changes in forest vegetation and fire regimes. The…
Publication Type: Book Chapter
Disequilibrium of fire-prone forests sets the stage for a rapid decline in conifer dominance during the 21st century
Year: 2018
The impacts of climatic changes on forests may appear gradually on time scales of years to centuries due to the long generation times of trees. Consequently, current forest extent may not reflect current climatic patterns. In contrast with these lagged responses, abrupt transitions in forests under climate change may occur in environments where alternative vegetation states are influenced by disturbances, such as fire. The Klamath forest landscape (northern California and southwest Oregon, USA) is currently dominated by high biomass, biodiverse temperate coniferous forests, but climate change…
Publication Type: Journal Article
Restoring historical forest conditions in a diverse inland Pacific Northwest landscape
Year: 2018
A major goal of managers in fire-prone forests is restoring historical structure and composition to promote resilience to future drought and disturbance. To accomplish this goal, managers require information about reference conditions in different forest types, as well as tools to determine which individual trees to retain or remove to approximate those reference conditions. We used dendroecological reconstructions and General Land Office records to quantify historical forest structure and composition within a 13,600 ha study area in eastern Oregon where the USDA Forest Service is planning…
Publication Type: Journal Article