Research Database
Displaying 81 - 100 of 133
Regional projections of the likelihood of very large wildland fires under a changing climate in the contiguous Western United States
Year: 2014
Seasonal changes in the climatic potential for very large wildfires (VLWF ≥ 50,000 ac ~ 20,234 ha) across the western contiguous United States are projected over the 21st century using generalized linear models and downscaled climate projections for two representative concentration pathways (RCPs). Significant (p ≤ 0.05) increases in VLWF probability for climate of the mid-21st century (2031–2060) relative to contemporary climate are found, for both RCP 4.5 and 8.5. The largest differences are in the Eastern Great Basin, Northern Rockies, Pacific Northwest, Rocky Mountains, and Southwest.…
Publication Type: Journal Article
Fire behavior in masticated fuels: A review
Year: 2014
Mastication is an increasingly common fuels treatment that redistributes “ladder” fuels to the forest floor to reduce vertical fuel continuity, crown fire potential, and fireline intensity, but fuel models do not exist for predicting fire behavior in these fuel types. Recent fires burning in masticated fuels have behaved in unexpected and contradictory ways, likely because the shredded, compact fuel created when trees and shrubs are masticated contains irregularly shaped pieces in mixtures quite different from other woody fuels. We review fuels characteristics and fire behavior in masticated…
Publication Type: Journal Article
State of Fire
Year: 2014
Describing the 2013 summer fire season, the Oregon Department of Forestry called it “epic.” On those lands protected by the state, it was the costliest ever, and the first time in over 60 years that more than 100,000 acres burned. Oregon’s forests are changing. The management objectives and priorities of federal and private landowners are evolving. Drought has afflicted parts of the state, and climate trends are making fire seasons longer and more intense. And in the wildland-urban interface, more homes have been built in the path of wildfire. The ways Oregonians prevent, fight, manage and,…
Publication Type: Report
Synthesis on crown fire behavior in conifer forests
Year: 2014
Mass media images of raging crown fires have affected how many people view their wildlands. Flames surge and leap dozens and even hundreds of feet into the air; planes zoom above the flames releasing streams of brightly colored retardant; and giant pyrocumulonimbus clouds tower over the landscape. No doubt, it’s dramatic lead story material. But, to many, and especially those in the wildland fire community, this is serious business. Tens of thousands of acres are severely burned in a single day; homes and lives are endangered; and ecosystems are changed dramatically for decades or longer.…
Publication Type: Journal
The Ecology and Management of Moist Mixed-Conifer Forests in Eastern Oregon and Washington: a Synthesis of the Relevant Biophysical Science and Implications for Future Land Management
Year: 2014
Land managers in the Pacific Northwest have reported a need for updated scientific information on the ecology and management of mixed-conifer forests east of the Cascade Range in Oregon and Washington. Of particular concern are the moist mixed-conifer forests, which have become drought-stressed and vulnerable to high-severity fire after decades of human disturbances and climate warming. This synthesis responds to this need. We present a compilation of existing research across multiple natural resource issues, including disturbance regimes, the legacy effects of past management actions,…
Publication Type: Report
A synthesis of post-fire Burned Area Reports from 1972 to 2009 for western US Forest Service lands: trends in wildfire characteristics and post-fire stabilisation treatments and expenditures
Year: 2014
Over 1200 post-fire assessment and treatment implementation reports from four decades (1970s–2000s) of western US forest fires have been examined to identify decadal patterns in fire characteristics and the justifications and expenditures for the post-fire treatments. The main trends found were: (1) the area burned by wildfire increased over time and the rate of increase accelerated after 1990; (2) the proportions of burned area assessed as low, moderate and high burn severity likely have remained fairly constant over time, but the use of satellite imagery that began c. 2000 increased the…
Publication Type: Journal Article
Interactions of insects, fire and climate on fuel loads and fire behavior in mixed conifer forest
Year: 2013
Mixed-conifer forests in the interior Pacific Northwest are subject to sporadic outbreaks of the western spruce budworm, the most destructive defoliator in western North America. Such outbreaks usually occur synchronously over broad regions and lead to widespread decreases in growth rates and low to moderate levels of mortality. In the last century, changing land use and fire suppression have led to an increase in the amount and density of host tree species, and changed fire regimes. This has altered the severity and frequency of both fire and western spruce budworm. In spite of the…
Publication Type: Report
Current status and future needs of the BehavePlus fire modeling system
Year: 2013
The BehavePlus Fire Modeling System is among the most widely used systems for wildland fire prediction. It is designed for use in a range of tasks including wildfire behaviour prediction, prescribed fire planning, fire investigation, fuel hazard assessment, fire model understanding, communication and research. BehavePlus is based on mathematical models for fire behaviour, fire effects and fire environment. It is a point system for which conditions are constant for each calculation, but is designed to encourage examination of the effect of a range of conditions through tables and graphs.…
Publication Type: Journal Article
Research and development supporting risk-based wildfire effects prediction for fuels and fire management: status and needs
Year: 2013
Wildland fire management has moved beyond a singular focus on suppression, calling for wildfire management for ecological benefit where no critical human assets are at risk. Processes causing direct effects and indirect, long-term ecosystem changes are complex and multidimensional. Robust risk-assessment tools are required that account for highly variable effects on multiple values-at-risk and balance competing objectives, to support decision making. Providing wildland fire managers with risk-analysis tools requires a broad scientific foundation in fire behaviour and effects prediction as…
Publication Type: Journal Article
Crown fire behavior characteristics and prediction in conifer forests: a state-of-knowledge synthesis
Year: 2013
Joint Fire Science Program (JFSP) project 09-S-03-1 was undertaken in response to JFSP Project Announcement No. FA-RFA09-0002 with respect to a synthesis on extreme fire behavior or more specifically a review and analysis of the literature dealing with certain features of crown fire behavior in conifer forests in the United States and adjacent regions of Canada. The key findings presented are organized along nine topical areas: types of crown fires; crown fire initiation; crown fire propagation; crown fire rate of spread; crown fire intensity and flame zone characteristics; crown fire area…
Publication Type: Report
Optimising fuel treatments over time and space
Year: 2013
Fuel treatments have been widely used as a tool to reduce catastrophic wildland fire risks in many forests around the world. However, it is a challenging task for forest managers to prioritise where, when and how to implement fuel treatments across a large forest landscape. In this study, an optimisation model was developed for long-term fuel management decisions at a landscape scale. Using a simulated annealing algorithm, the model optimises locations and timing of fuel treatments, while considering changes in forest dynamics over time, fire behaviour and spread, values at risk, and…
Publication Type: Journal Article
A Land Manager's Guide for Creating Fire-resistant Forests
Year: 2013
This publication provides an overview of how various silvicultural treatments affect fuel and fire behavior, and how to create fire-resistant forests. In properly treated, fire-resistant forests, fire intensity is reduced and overstory trees are more likely to survive than in untreated forests. Fire-resistant forests are not “fireproof” – under the right conditions, any forest will burn. Much of what we present here is pertinent to the drier forests of the Pacific Northwest, which have become extremely dense and fire prone.
Publication Type: Report
Fire regimes of quaking aspen in the Mountain West
Year: 2013
Quaking aspen, the most widespread tree species in North America, reproduces primarily by resprouting from roots. In some stands, mortality from fire encourages sprouting and prevents conifers from eventually replacing aspen. In other areas, aspen can form stable communities that do not require fire to regenerate or persist. USGS fire ecologist Doug Shinneman and colleagues reviewed literature about aspen populations and fire, summarized research findings, and suggested a classification system for aspen across the western mountainous United States. The scientists proposed five aspen “fire…
Publication Type: Journal Article
Is burn severity related to fire intensity? Observations from landscape scale remote sensing
Year: 2013
Biomass burning by wildland fires has significant ecological, social and economic impacts. Satellite remote sensing provides direct measurements of radiative energy released by the fire (i.e. fire intensity) and surrogate measures of ecological change due to the fire (i.e. fire or burn severity). Despite anecdotal observations causally linking fire intensity with severity, the nature of any relationship has not been examined over extended spatial scales. We compare fire intensities defined by Moderate Resolution Imaging Spectroradiometer Fire Radiative Power (MODIS FRP) products with Landsat-…
Publication Type: Journal Article
Social Science at the WUI: A Compendium of Research Results to Create Fire-Adapted Communities
Year: 2013
Over the past decade, a growing body of research has been conducted on the human dimensions of wildland fire. Building on a relatively small number of foundational studies, this research now addresses a wide range of topics including mitigation activities on private lands, fuels reduction treatments on public land, community impacts and resident behaviors during fire, acceptance of approaches to postfire restoration and recovery, and fire management policy and decision making. As this research has matured, there has been a recognition of the need to examine the full body of resulting…
Publication Type: Report
Effects of salvage logging and pile-and-burn on fuel loading, potential fire behavior, fuel consumption and emissions
Year: 2013
We used a combination of field measurements and simulation modelling to quantify the effects of salvage logging, and a combination of salvage logging and pile-and-burn fuel surface fuel treatment (treatment combination), on fuel loadings, fire behaviour, fuel consumption and pollutant emissions at three points in time: post-windstorm (before salvage logging), post-salvage logging and post-surface fuel treatment (pile-and-burn). Salvage logging and the treatment combination significantly reduced fuel loadings, fuelbed depth and smoke emissions. Salvage logging and the treatment combination…
Publication Type: Journal Article
Models for predicting fuel consumption in sage-brush-dominated ecosystems
Year: 2013
Fuel consumption predictions are necessary to accurately estimate or model fire effects, including pollutant emissions during wildland fires. Fuel and environmental measurements on a series of operational prescribed fires were used to develop empirical models for predicting fuel consumption in big sagebrush (Artemisia tridentata Nutt.) ecosystems. Models are proposed for predicting fuel consumption during prescribed fires in the fall and the spring. Total prefire fuel loading ranged from 5.3–23.6 Mg · ha−1; between 32% and 92% of the total loading was composed of live and dead big sagebrush.…
Publication Type: Journal Article
Capturing Fire: RxCadre Takes Fire Measurements to a Whole New Level
Year: 2013
Models of fire behavior and effects do not always make accurate predictions, and there is not enough systematically gathered data to validate them. To help advance fire behavior and fire effects model development, the Joint Fire Science Program is helping fund the RxCADRE, which is made up of scientists from the U.S. Forest Service and several universities who orchestrate and collect data on prescribed burns in the southeastern United States. The RxCADRE-prescribed burns are yielding a comprehensive dataset of fire behavior, fire effects, and smoke chemistry and dynamics, with measurements…
Publication Type: Report
Fuel Treatments and Fire Severity: A Meta-Analysis
Year: 2013
We employed meta-analysis and information theory to synthesize findings reported in the literature on the effects of fuel treatments on subsequent fire intensity and severity. Data were compiled from 19 publications that reported observed fire responses from 62 treated versus untreated contrasts. Effect sizes varied widely and the most informative grouping of studies distinguished three vegetation types and three types of fuel treatment. The resultant meta-analytic model is highly significant (p<0.001) and explains 78% of the variability in reported observations of fuel treatment…
Publication Type: Report
Modelling conditional burn probability patterns for large wildland fires
Year: 2013
We present a technique for modelling conditional burn probability patterns in two dimensions for large wildland fires. The intended use for the model is strategic program planning when information about future fire weather and event durations is unavailable and estimates of the average probabilistic shape and extent of large fires on a landscape are needed. To model average conditional burn probability patterns, we organised historical fire data from Yellowstone National Park, USA, into a set of grids; one grid per fire. We captured various spatial relationships inherent in the gridded data…
Publication Type: Journal Article