Research Database
Displaying 61 - 80 of 190
Quantifying the flammability of living plants at the branch scale: which metrics to use?
Year: 2023
Background
Plant flammability is an important factor in fire behaviour and post-fire ecological responses. There is consensus about the broad attributes (or axes) of flammability but little consistency in their measurement.
Aims
We sought to provide a pathway towards greater consistency in flammability research by identifying a subset of preferred flammability metrics for living plants.
Methods
Flammability was measured at the branch scale using a range of metrics for 140 plant specimens in an apparatus that simulates an approaching fire front.
Key results
We identified a subset…
Publication Type: Journal Article
Prescribed fire after thinning increased resistance of sub-Mediterranean pine forests to drought events and wildfires
Year: 2023
Vegetation structure affects the vulnerability of a forest to drought events and wildfires. Management decisions, such as thinning intensity and type of understory treatment, influence competition for water resources and amount of fuel available. While heavy thinning effectively reduces tree water stress and intensity of a crown fire, the duration of these benefits may be limited by a fast growth response of the understory. Our aim was to study the effect of forest structure on pine forests vulnerability to extreme drought events and on the potential wildfire behaviour after management, with…
Publication Type: Journal Article
Fire refugia are robust across Western US forested ecoregions, 1986–2021
Year: 2023
In the Western US, area burned and fire size have increased due to the influences of climate change, long-term fire suppression leading to higher fuel loads, and increased ignitions. However, evidence is less conclusive about increases in fire severity within these growing wildfire extents. Fires burn unevenly across landscapes, leaving islands of unburned or less impacted areas, known as fire refugia. Fire refugia may enhance post-fire ecosystem function and biodiversity by providing refuge to species and functioning as seed sources after fires. In this study, we evaluated whether the…
Publication Type: Journal Article
The outsized role of California’s largest wildfires in changing forest burn patterns and coarsening ecosystem scale
Year: 2023
Highlights • We evaluated trends for 1,809 fires that burned 1985–2020 across California forests. • Top 1% of fires by size burned 47% of total area burned across the study period. • Top 1% (18 fires) produced 58% of high and 42% of low-moderate severity area. • Top 1% created novel landscape patterns of large burn severity patches. • These large fires create new opportunities for managing forest resilience. Although recent large wildfires in California forests are well publicized in media and scientific literature, their cumulative effects on forest structure and implications for forest…
Publication Type: Journal Article
Less fuel for the next fire? Short-interval fire delays forest recovery and interacting drivers amplify effects
Year: 2023
As 21st-century climate and disturbance dynamics depart from historic baselines, ecosystem resilience is uncertain. Multiple drivers are changing simultaneously, and interactions among drivers could amplify ecosystem vulnerability to change. Subalpine forests in Greater Yellowstone (Northern Rocky Mountains, USA) were historically resilient to infrequent (100–300 year), severe fire. We sampled paired short-interval (<30-year) and long-interval (>125-year) post-fire plots most recently burned between 1988 and 2018 to address two questions: (1) How do short-interval fire, climate,…
Publication Type: Journal Article
Effects of nurse shrubs and biochar on planted conifer seedling survival and growth in a high-severity burn patch in New Mexico, USA
Year: 2023
The synergistic effects of widespread high-severity wildfire and anthropogenic climate change are driving large-scale vegetation conversion. In the southwestern United States, areas that were once dominated by conifer forests are now shrub- or grasslands after high-severity wildfire, an ecosystem conversion that could be permanent without human intervention. Yet, the reforestation of these landscapes is rarely successful, with a mean planted seedling survival of just 25 %. Given these low rates, we carried out a planting experiment to quantify the impacts of biochar as a soil amendment and…
Publication Type: Journal Article
Vertical and Horizontal Crown Fuel Continuity Influences Group-Scale Ignition and Fuel Consumption
Year: 2023
A deeper understanding of the influence of fine-scale fuel patterns on fire behavior is essential to the design of forest treatments that aim to reduce fire hazard, enhance structural complexity, and increase ecosystem function and resilience. Of particular relevance is the impact of horizontal and vertical forest structure on potential tree torching and large-tree mortality. It may be the case that fire behavior in spatially complex stands differs from predictions based on stand-level descriptors of the fuel distribution and structure. In this work, we used a spatially explicit fire behavior…
Publication Type: Journal Article
Low-intensity fires mitigate the risk of high-intensity wildfires in California’s forests
Year: 2023
The increasing frequency of severe wildfires demands a shift in landscape management to mitigate their consequences. The role of managed, low-intensity fire as a driver of beneficial fuel treatment in fire-adapted ecosystems has drawn interest in both scientific and policy venues. Using a synthetic control approach to analyze 20 years of satellite-based fire activity data across 124,186 square kilometers of forests in California, we provide evidence that low-intensity fires substantially reduce the risk of future high-intensity fires. In conifer forests, the risk of high-intensity fire is…
Publication Type: Journal Article
Spatial interactions among short-interval fires reshape forest landscapes
Year: 2023
Aim Ecological disturbances are increasing as climate warms, and how multiple disturbances interact spatially to drive landscape change is poorly understood. We quantified burn severity across fire regimes in reburned forest landscapes to ask how spatial patterns of high-severity fire differ between sequential overlapping fires and how landscape heterogeneity is shaped by cumulative disturbance patterns. We also characterized the amount and configuration of an emerging phenomenon: areas burned as high-severity fire twice in successive fires. Location Northwest USA. Time period 1984–2020.…
Publication Type: Journal Article
Heading and backing fire behaviours mediate the influence of fuels on wildfire energy
Year: 2023
Background: Pre-fire fuels, topography, and weather influence wildfire behaviour and fire-driven ecosystem carbon loss. However, the pre-fire characteristics that contribute to fire behaviour and effects are often understudied for wildfires because measurements are difficult to obtain. Aims: This study aimed to investigate the relative contribution of pre-fire conditions to fire energy and the role of fire advancement direction in fuel consumption. Methods: Over 15 years, we measured vegetation and fuels in California mixed-conifer forests within days before and after wildfires, with co-…
Publication Type: Journal Article
Post-fire landscape evaluations in Eastern Washington, USA: Assessing the work of contemporary wildfires
Year: 2022
In the western US, wildfires are modifying the structure, composition, and patterns of forested landscapes at ratesthat far exceed mechanical thinning and prescribed fire treatments. There are conflicting narratives as to whetherthese wildfires are restoring landscape resilience to future climate and wildfires. To evaluate the landscape-levelwork of wildfires, we assessed four subwatersheds in eastern Washington, USA that experienced large wildfires in2014, 2015, or 2017 after more than a century of fire exclusion and extensive timber harvest. We compared preandpost-fire landscape conditions…
Publication Type: Journal Article
Frequency of disturbance mitigates high-severity fire in the Lake Tahoe Basin, California and Nevada
Year: 2022
Because of past land use changes and changing climate, forests are moving outside of their historical range of variation. As fires become more severe, forest managers are searching for strategies that can restore forest health and reduce fire risk. However, management activities are only one part of a suite of disturbance vectors that shape forest conditions. To account for the range of disturbance intensities and disturbance types (wildfire, bark beetles, and management), we developed a disturbance return interval (DRI) that represents the average return period for any disturbance, human or…
Publication Type: Journal Article
Cascadia Burning: The historic, but not historically unprecedented, 2020 wildfires in the Pacific Northwest, USA
Year: 2022
Wildfires devastated communities in Oregon and Washington in September 2020, burning almost as much forest west of the Cascade Mountain crest (“the westside”) in 2 weeks (~340,000 ha) as in the previous five decades (~406,00 ha). Unlike dry forests of the interior western United States, temperate rain forests of the Pacific Northwest have experienced limited recent fire activity, and debates surrounding what drove the 2020 fires, and management strategies to adapt to similar future events, necessitate a scientific evaluation of the fires. We evaluate five questions regarding the 2020 Labor…
Publication Type: Journal Article
A systematic review of empirical evidence for landscape-level fuel treatment effectiveness
Year: 2022
Background Adverse effects of wildfires can be mitigated within fuel treatments, but empirical evidence of their effectiveness across large areas is needed to guide design and implementation at the landscape level. We conducted a systematic literature review of empirically based studies that tested the influence of landscape-level fuel treatments on subsequent wildfires in North America over the past 30 years to evaluate how treatment type and configuration affect subsequent wildfire behavior or enable more effective wildfire response. Results We identified 2240 papers, but only 26 met our…
Publication Type: Journal Article
Changes in fire behavior caused by fire exclusion and fuel build-up vary with topography in California montane forests, USA
Year: 2022
Wildfire sizes and proportions burned with high severity effects are increasing in seasonally dry forests, especially in the western USA. A critical need in efforts to restore or maintain these forest ecosystems is to determine where fuel build-up caused by fire exclusion reaches thresholds that compromise resilience to fire. Empirical studies identifying drivers of fire severity patterns in actual wildfires can be confounded by co-variation of vegetation and topography and the stochastic effects of weather and rarely consider long-term changes in fuel caused by fire exclusion. To overcome…
Publication Type: Journal Article
The impacts of wildfires of different burn severities on vegetation structure across the western United States rangelands
Year: 2022
Large wildfires have increased in western US rangelands over the last three decades. There is limited information on the impacts of wildfires with different severities on the vegetation in these rangelands. This study assessed the impacts of large wildfires on rangeland fractional cover including annual forbs and grasses (AFG), perennial forbs and grasses (PFG), shrubs (SHR) and trees (TREE) across the western US, and explored relationships between changes in fractional cover and prefire soil moisture conditions. The Expectation Maximization (EM) algorithm was used to group wildfires into…
Publication Type: Journal Article
Extreme fire spread events and area burned under recent and future climate in the western USA
Year: 2022
Aim: Wildfire activity in recent years is notable not only for an expansion of total area burned but also for large, single-day fire spread events that pose challenges to ecological systems and human communities. Our objectives were to gain new insight into the relationships between extreme single-day fire spread events, annual area burned, and fire season climate and to predict changes under future warming. Location: Fire-prone regions of the western USA. Time period: 2002–2020; a future +2°C scenario. Methods: We used a satellite-derived dataset of daily fire spread events and gridded…
Publication Type: Journal Article
Extreme Winds Alter Influence of Fuels and Topography on Megafire Burn Severity in Seasonal Temperate Rainforests under Record Fuel Aridity
Year: 2022
Nearly 0.8 million hectares of land were burned in the North American Pacific Northwest (PNW) over two weeks under record-breaking fuel aridity and winds during the extraordinary 2020 fire season, representing a rare example of megafires in forests west of the Cascade Mountains. We quantified the relative influence of weather, vegetation, and topography on patterns of high burn severity (>75% tree mortality) among five synchronous megafires in the western Cascade Mountains. Despite the conventional wisdom in climate-limited fire regimes that regional drivers (e.g., extreme aridity, and…
Publication Type: Journal Article
The contribution of Indigenous stewardship to an historical mixed-severity fire regime in British Columbia, Canada
Year: 2022
Indigenous land stewardship and mixed-severity fire regimes both promote landscape heterogeneity, and the relationship between them is an emerging area of research. In our study, we reconstructed the historical fire regime of Ne Sextsine, a 5900-ha dry, Douglas-fir-dominated forest in the traditional territory of the T’exelc (Williams Lake First Nation) in British Columbia, Canada. Between 1550 and 1982 CE, we found median fire intervals of 18 years at the plot-level and 4 years at the study site-level. Ne Sextsine was characterized by an historical mixed-severity fire regime, dominated by…
Publication Type: Journal Article
Burn severity and pre-fire seral state interact to shape vegetation responses to fire in a young, western Cascade Range forest
Year: 2022
Wildfire size and frequency are increasing across the western U.S., affecting large areas of young, second-growth forest originating after logging and burning. Despite their prevalence in the western Cascade landscape, we have a poor understanding of how these young stands respond to fire or how their responses differ from older, undisturbed forests, which are well studied. We explore these questions using pre- and early post-fire data from a young (<30-year-old), naturally regenerating forest in western Oregon that was burned preemptively to limit spread of the 2018 Terwilliger Fire. We…
Publication Type: Journal Article
Pagination
- First page
- Previous page
- …
- 2
- 3
- 4
- 5
- 6
- …
- Next page
- Last page