Research Database
Displaying 41 - 60 of 189
Tribal stewardship for resilient forest socio-ecosystems
Year: 2024
The Yurok Tribe, along with other tribal communities in northwest California, non-profit organizations, universities, and governmental agencies are working to restore forests and woodlands to be more resilient to wildfires, drought, pests and diseases. Our current work within ancestral Yurok territory is designing and evaluating effects of forest treatments including fuels reduction, tree harvesting, and intentional burning based upon indigenous knowledge and associated traditional stewardship practices. Central to these evaluations are the potential availability, quantity, and quality of…
Publication Type: Journal Article
Five social and ethical considerations for using wildfire visualizations as a communication tool
Year: 2024
BackgroundIncreased use of visualizations as wildfire communication tools with public and professional audiences—particularly 3D videos and virtual or augmented reality—invites discussion of their ethical use in varied social and temporal contexts. Existing studies focus on the use of such visualizations prior to fire events and commonly use hypothetical scenarios intended to motivate proactive mitigation or explore decision-making, overlooking the insights that those who have already experienced fire events can provide to improve user engagement and understanding of wildfire…
Publication Type: Journal Article
A model for rapid PM2.5 exposure estimates in wildfire conditions using routinely available data: rapidfire v0.1.3
Year: 2024
Urban smoke exposure events from large wildfires have become increasingly common in California and throughout the western United States. The ability to study the impacts of high smoke aerosol exposures from these events on the public is limited by the availability of high-quality, spatially resolved estimates of aerosol concentrations. Methods for assigning aerosol exposure often employ multiple data sets that are time-consuming to create and difficult to reproduce. As these events have gone from occasional to nearly annual in frequency, the need for rapid smoke exposure assessments has…
Publication Type: Journal Article
Fire intensity effects on serotinous seed survival
Year: 2024
BackgroundIn fire-prone environments, some species store their seeds in canopy cones (serotiny), which provides seeds protection from the passage of fire before stimulating seed release. However, the capacity of serotinous cones to protect seeds under high intensity fire is uncertain. Beyond simply “high” versus “low” fire intensity or severity, we must understand the influence of the specific characteristics of fire intensity—heat flux, exposure duration, and their dynamics—on serotinous seed survival. In this study, we tested serotinous seed survival under transient levels of…
Publication Type: Journal Article
Leveraging the next generation of spaceborne Earth observations for fuel monitoring and wildland fire management
Year: 2024
Managing fuels is a key strategy for mitigating the negative impacts of wildfires on people and the environment. The use of satellite-based Earth observation data has become an important tool for managers to optimize fuel treatment planning at regional scales. Fortunately, several new sensors have been launched in the last few years, providing novel opportunities to enhance fuel characterization. Herein, we summarize the potential improvements in fuel characterization at large scale (i.e., hundreds to thousands of km2) with high spatial and spectral resolution arising from the use of new…
Publication Type: Journal Article
Informing proactive wildfire management that benefits vulnerable communities and ecological values
Year: 2024
- In response to mounting wildfire risks, land managers across the country will need to dramatically increase proactive wildfire management (e.g. fuel and forest health treatments). While human communities vary widely in their vulnerability to the impacts of fire, these discrepancies have rarely informed prioritizations for wildfire mitigation treatments. The ecological values and ecosystem services provided by forests have also typically been secondary considerations.
- To identify locations across the conterminous US where proactive wildfire management is likely to be effective…
Publication Type: Journal Article
A fast spectral recovery does not necessarily indicate post-fire forest recovery
Year: 2024
BackgroundClimate change has increased wildfire activity in the western USA and limited the capacity for forests to recover post-fire, especially in areas burned at high severity. Land managers urgently need a better understanding of the spatiotemporal variability in natural post-fire forest recovery to plan and implement active recovery projects. In burned areas, post-fire “spectral recovery”, determined by examining the trajectory of multispectral indices (e.g., normalized burn ratio) over time, generally corresponds with recovery of multiple post-fire vegetation types, including trees and…
Publication Type: Journal Article
How are long-term stand structure, fuel profiles, and potential fire behavior affected by fuel treatment type and intensity in Interior Pacific Northwest forests?
Year: 2024
Fuel treatments are commonly applied to increase resilience to wildfire in dry and historically frequent-fire forests of western North America. The long-term effects of fuel treatments on forest structure, fuel profiles (amount and configuration of fuels), and potential wildfire behavior are not well known relative to short-term effects. Additionally, long-term treatment effects on the development of stand structure and fuel profiles have rarely been compared to the long-term effects of pre-treatment conditions, treatment intensity, and site productivity. In this study, we addressed these…
Publication Type: Journal Article
Drivers and Impacts of the Record-Breaking 2023 Wildfire Season in Canada
Year: 2024
The 2023 wildfire season in Canada was unprecedented in its scale and intensity, spanning from mid-April to late October and across much of the forested regions of Canada. Here, we summarize the main causes and impacts of this exceptional season. The record-breaking total area burned (~15 Mha)can be attributed to several environmental factors that converged early in the season: early snowmelt, multi annual drought conditions in western Canada, and the rapid transition to drought in eastern Canada. Anthropogenic climate change enabled sustained extreme fire weather conditions, as the meanMay–…
Publication Type: Journal Article
Probabilistic Forecasting of Lightning Strikes over the Continental USA and Alaska: Model Development and Verification
Year: 2024
Lightning is responsible for the most area annually burned by wildfires in the extratropical region of the Northern Hemisphere. Hence, predicting the occurrence of wildfires requires reliable forecasting of the chance of cloud-to-ground lightning strikes during storms. Here, we describe the development and verification of a probabilistic lightning-strike algorithm running on a uniform 20 km grid over the continental USA and Alaska. This is the first and only high-resolution lightning forecasting model for North America derived from 29-year-long data records. The algorithm consists of a large…
Publication Type: Journal Article
Blending Indigenous and western science: Quantifying cultural burning impacts in Karuk Aboriginal Territory
Year: 2024
The combined effects of Indigenous fire stewardship and lightning ignitions shaped historical fire regimes, landscape patterns, and available resources in many ecosystems globally. The resulting fire regimes created complex fire–vegetation dynamics that were further influenced by biophysical setting, disturbance history, and climate. While there is increasing recognition of Indigenous fire stewardship among western scientists and managers, the extent and purpose of cultural burning is generally absent from the landscape–fire modeling literature and our understanding of ecosystem processes and…
Publication Type: Journal Article
A fire-use decision model to improve the United States’ wildfire management and support climate change adaptation
Year: 2024
The US faces multiple challenges in facilitating the safe, effective, and proactive use of fire as a landscape management tool. This intentional fire use exposes deeply ingrained communication challenges and distinct but overlapping strategies of prescribed fire, cultural burning, and managed wildfire. We argue for a new conceptual model that is organized around ecological conditions, capacity to act, and motivation to use fire and can integrate and expand intentional fire use as a tool. This result emerges from more considered collaboration and communication of values and needs to address…
Publication Type: Journal Article
Review of fuel treatment effects on fuels, fire behavior and ecological resilience in sagebrush (Artemisia spp.) ecosystems in the Western U.S.
Year: 2024
BackgroundSagebrush ecosystems are experiencing increases in wildfire extent and severity. Most research on vegetation treatments that reduce fuels and fire risk has been short term (2–3 years) and focused on ecological responses. We review causes of altered fire regimes and summarize literature on the longer-term effects of treatments that modify (1) shrub fuels, (2) pinyon and juniper canopy fuels, and (3) fine herbaceous fuels. We describe treatment effects on fuels, fire behavior, ecological resilience, and resistance to invasive annual grasses.ResultsOur review revealed tradeoffs in…
Publication Type: Journal Article
Projecting live fuel moisture content via deep learning
Year: 2023
Background: Live fuel moisture content (LFMC) is a key environmental indicator used to monitor for high wildfire risk conditions. Many statistical models have been proposed to predict LFMC from remotely sensed data; however, almost all these estimate current LFMC (nowcasting models). Accurate modelling of LFMC in advance (projection models) would provide wildfire managers with more timely information for assessing and preparing for wildfire risk. Aims: The aim of this study was to investigate the potential for deep learning models to predict LFMC across the continental United States 3 months…
Publication Type: Journal Article
Quantifying the flammability of living plants at the branch scale: which metrics to use?
Year: 2023
Background
Plant flammability is an important factor in fire behaviour and post-fire ecological responses. There is consensus about the broad attributes (or axes) of flammability but little consistency in their measurement.
Aims
We sought to provide a pathway towards greater consistency in flammability research by identifying a subset of preferred flammability metrics for living plants.
Methods
Flammability was measured at the branch scale using a range of metrics for 140 plant specimens in an apparatus that simulates an approaching fire front.
Key results
We identified a subset…
Publication Type: Journal Article
Prescribed fire after thinning increased resistance of sub-Mediterranean pine forests to drought events and wildfires
Year: 2023
Vegetation structure affects the vulnerability of a forest to drought events and wildfires. Management decisions, such as thinning intensity and type of understory treatment, influence competition for water resources and amount of fuel available. While heavy thinning effectively reduces tree water stress and intensity of a crown fire, the duration of these benefits may be limited by a fast growth response of the understory. Our aim was to study the effect of forest structure on pine forests vulnerability to extreme drought events and on the potential wildfire behaviour after management, with…
Publication Type: Journal Article
Avoided wildfire impact modeling with counterfactual probabilistic analysis
Year: 2023
Assessing the effectiveness and measuring the performance of fuel treatments and other wildfire risk mitigation efforts are challenging endeavors. Perhaps the most complicated is quantifying avoided impacts. In this study, we show how probabilistic counterfactual analysis can help with performance evaluation. We borrow insights from the disaster risk mitigation and climate event attribution literature to illustrate a counterfactual framework and provide examples using ensemble wildfire simulations. Specifically, we reanalyze previously published fire simulation data from fire-prone landscapes…
Publication Type: Journal Article
Less fuel for the next fire? Short-interval fire delays forest recovery and interacting drivers amplify effects
Year: 2023
As 21st-century climate and disturbance dynamics depart from historic baselines, ecosystem resilience is uncertain. Multiple drivers are changing simultaneously, and interactions among drivers could amplify ecosystem vulnerability to change. Subalpine forests in Greater Yellowstone (Northern Rocky Mountains, USA) were historically resilient to infrequent (100–300 year), severe fire. We sampled paired short-interval (<30-year) and long-interval (>125-year) post-fire plots most recently burned between 1988 and 2018 to address two questions: (1) How do short-interval fire, climate,…
Publication Type: Journal Article
Using soil moisture information to better understand and predict wildfire danger: a review of recent developments and outstanding questions
Year: 2023
Soil moisture conditions are represented in fire danger rating systems mainly through simple drought indices based on meteorological variables, even though better sources of soil moisture information are increasingly available. This review summarises a growing body of evidence indicating that greater use of in situ, remotely sensed, and modelled soil moisture information in fire danger rating systems could lead to better estimates of dynamic live and dead herbaceous fuel loads, more accurate live and dead fuel moisture predictions, earlier warning of wildfire danger, and better forecasts of…
Publication Type: Journal Article
An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA
Year: 2023
Wildfire occurrence varies among regions and through time due to the long-term impacts of climate on fuel structure and short-term impacts on fuel flammability. Identifying the climatic conditions that trigger extensive fire years at regional scales can enable development of area burned models that are both spatially and temporally robust, which is crucial for understanding the impacts of past and future climate change. We identified region-specific thresholds in fire-season aridity that distinguish years with limited, moderate, and extensive area burned for 11 extensively forested ecoregions…
Publication Type: Journal Article