Research Database
Displaying 1 - 2 of 2
Exposure and carbon risk for mature and old-growth forests from severe wildfire in the Pacific Northwest, U.S.A.
Year: 2026
Mature and old-growth forests (MOG) provide essential ecosystem services, yet they face increasing threats. Currently, high-intensity, high-severity wildfires are the main driver for loss of MOG on federally managed forests across the United States. Quantifying MOG forests with greatest exposure to stand-replacing wildfires provides essential information for land managers. We integrated geospatial data from fire behavior simulations (fire intensity), fire refugia prediction (fire severity), forest type mapping, and carbon estimates to assess exposure of MOG forests to stand-replacing…
Publication Type: Journal Article
Assessing fuel treatment effectiveness using satellite imagery and spatial statistics
Year: 2009
Understanding the influences of forest management practices on wildfire severity is critical in fire-prone ecosystems of the western United States. Newly available geospatial data sets characterizing vegetation, fuels, topography, and burn severity offer new opportunities for studying fuel treatment effectiveness at regional to national scales. In this study, we used ordinary least-squares (OLS) regression and sequential autoregression (SAR) to analyze fuel treatment effects on burn severity for three recent wildfires: the Camp 32 fire in western Montana, the School fire in southeastern…
Publication Type: Journal Article