Research Database
Displaying 21 - 40 of 200
Aspen impedes wildfire spread in southwestern United States landscapes
Year: 2025
Aspen (Populus tremuloides) forests are generally thought to impede fire spread, yet the extent of this effect is not well quantified in relation to other vegetation types. We examined the influence of aspen cover on interpolated daily fire spread rates, the relative abundance of aspen at fire perimeters versus burn interiors, and whether these relationships shifted under more fire-conducive atmospheric conditions. Our study incorporated 314 fires occurring between 2001 and 2020 in the southwestern United States and a suite of gridded vegetation, topography, and fire weather…
Publication Type: Journal Article
Extreme Weather Magnifies the Effects of Forest Structure on Wildfire, Driving Increased Severity in Industrial Forests
Year: 2025
Despite widespread concern over increases in wildfire severity, the mechanisms underlying this trend remain unclear, hampering our ability to mitigate the severity of future fires. There is substantial uncertainty regarding the relative roles of extreme weather conditions, which are exacerbated by climate change, and forest management, in particular differences between private industrial timber companies and public land agencies. To investigate the effects of extreme weather and forest management on fire severity, we used light detection and ranging (LiDAR) data to characterize pre-fire…
Publication Type: Journal Article
Extreme Fire Spread Events Burn More Severely and Homogenize Postfire Landscapes in the Southwestern United States
Year: 2025
Extreme fire spread events rapidly burn large areas with disproportionate impacts on people and ecosystems. Such events are associated with warmer and drier fire seasons and are expected to increase in the future. Our understanding of the landscape outcomes of extreme events is limited, particularly regarding whether they burn more severely or produce spatial patterns less conducive to ecosystem recovery. To assess relationships between fire spread rates and landscape burn severity patterns, we used satellite fire detections to create day‐of‐burning maps for 623 fires comprising 4267 single‐…
Publication Type: Journal Article
Insights Into Nature-Based Climate Solutions: Managing Forests for Climate Resilience and Carbon Stability
Year: 2025
Successful implementation of forest management as a nature-based climate solution is dependent on the durability of management-induced changes in forest carbon storage and sequestration. As forests face unprecedented stability risks in the face of ongoing climate change, much remains unknown regarding how management will impact forest stability, or how interactions with climate might shift the response of forests to management across spatiotemporal scales. Here, we used a process-based model to simulate multidecadal projections of forest dynamics in response to changes in management and…
Publication Type: Journal Article
Assessing fuel treatments and burn severity using global and local analyses
Year: 2025
BackgroundWildfires in western U.S. dry forest ecosystems have increased in size and severity during recent decades due primarily to more than a century of fire suppression, exclusion of Indigenous fire, and a rapidly warming climate. Fuel treatments have been employed to restore historical forest conditions and mitigate burn severity. However, their influence on burn severity in the context of other environmental variables and firefighting operations has not been extensively explored. The 2021 Bootleg Fire in south-central Oregon provided an opportunity to evaluate the effectiveness of…
Publication Type: Journal Article
Methods to assess fire-induced tree mortality: review of fire behaviour proxy and real fire experiments
Year: 2025
Background: The increased interest in why and how trees die from fire has led to several syntheses of the potential mechanisms of fire-induced tree mortality. However, these generally neglect to consider experimental methods used to simulate fire behaviour conditions.Aims: To describe, evaluate the appropriateness of and provide a historical timeline of the different approaches that have been used to simulate fire behaviour in fire-induced tree mortality studies.Methods: We conducted a historical review of the different actual and fire proxy methods that have been used to…
Publication Type: Journal Article
Collapse and restoration of mature forest habitat in California
Year: 2025
Mature and old-growth forests provide critically important ecosystems services and wildlife habitats, but they are being lost at a rapid rate to uncharacteristic mega-disturbances. We developed a simulation system to project time-to-extinction for mature and old-growth forest habitat in the Sierra Nevada, California, USA. The simulation parameters were derived from a 1985–2022 empirical time-series of habitat for the southern Sierra Nevada fisher (Pekania pennanti), an endangered native mammal and old-forest obligate that has seen a 50 % decline in its habitat over the past…
Publication Type: Journal Article
Trees in Fire-Maintained Forests Have Similar Growth Responses to Drought, but Greater Stomatal Conductance Than Trees in Fire-Excluded Forests
Year: 2025
In the western US, increased tree density in dry conifer forests from fire exclusion has caused tree growth declines, which is being compounded by hotter multi-year droughts. The reintroduction of frequent, low-severity wildfire reduces forest density by removing fire-intolerant trees, which can reduce competition for water and improve tree growth response to drought. We assessed how lower forest density following frequent, low-severity wildfire affected tree stomatal conductance and growth response to drought by coring and measuring competition surrounding ponderosa pines (Pinus…
Publication Type: Journal Article
Intensifying Fire Season Aridity Portends Ongoing Expansion of Severe Wildfire in Western US Forests
Year: 2025
Area burned by wildfire has increased in western US forests and elsewhere over recent decades coincident with warmer and drier fire seasons. However, high–severity fire—fire that kills all or most trees—is arguably a more important metric of fire activity given its destabilizing influence on forest ecosystems and direct and indirect impacts to human communities. Here, we quantified area burned and area burned severely in western US forests from 1985 to 2022 and evaluated trends through time. We also assessed key relationships between area burned, extent and proportion burned severely…
Publication Type: Journal Article
When do contemporary wildfires restore forest structures in the Sierra Nevada?
Year: 2024
Background: Following a century of fire suppression in western North America, managers use forest restoration treatments to reduce fuel loads and reintroduce key processes like fire. However, annual area burned by wildfire frequently outpaces the application of restoration treatments. As this trend continues under climate change, it is essential that we understand the effects of contemporary wildfires on forest ecosystems and the extent to which post-fire structures are meeting common forest restoration objectives. In this study, we used airborne lidar to evaluate fire effects across yellow…
Publication Type: Journal Article
Fire severity drives understory community dynamics and the recovery of culturally significant plants
Year: 2024
Anthropogenic influences are altering fire regimes worldwide, resulting in an increase in the size and severity of wildfires. Simultaneously, throughout western North America, there is increasing recognition of the important role of Indigenous fire stewardship in shaping historical fire regimes and fire-adapted ecosystems. However, there is limited understanding of how ecosystems are affected by or recover from contemporary “megafires,” particularly in terms of understory plant communities that are critical to both biodiversity and Indigenous cultures. To address this gap, our collaborative…
Publication Type: Journal Article
Generating fuel consumption maps on prescribed fire experiments from airborne laser scanning
Year: 2024
Background. Characterisation of fuel consumption provides critical insights into fire behaviour, effects, and emissions. Stand-replacing prescribed fire experiments in central Utah offered an opportunity to generate consumption estimates in coordination with other research efforts. Aims. We sought to generate fuel consumption maps using pre- and post-fire airborne laser scanning (ALS) and ground measurements and to test the spatial transferability of the ALSderived fuel models. Methods. Using random forest (RF), we empirically modelled fuel load and estimated consumption from pre-…
Publication Type: Journal Article
Forest structural complexity and ignition pattern influence simulated prescribed fire effects
Year: 2024
Forest structural characteristics, the burning environment, and the choice of ignition pattern each influence prescribed fire behaviors and resulting fire effects; however, few studies examine the influences and interactions of these factors. Understanding how interactions among these drivers can influence prescribed fire behavior and effects is crucial for executing prescribed fires that can safely and effectively meet management objectives. To analyze the interactions between the fuels complex and ignition patterns, we used FIRETEC, a three-dimensional computational fluid dynamics fire…
Publication Type: Journal Article
Severity of a megafire reduced by interactions of wildland fire suppression operations and previous burns
Year: 2024
Burned area and proportion of high severity fire have been increasing in the western USA, and reducing wildfire severity with fuel treatments or other means is key for maintaining fire-prone dry forests and avoiding fire-catalyzed forest loss. Despite the unprecedented scope of firefighting operations in recent years, their contribution to patterns of wildfire severity is rarely quantified. Here we investigate how wildland fire suppression operations and past fire severity interacted to affect severity patterns of the northern third of the 374 000 ha Dixie Fire, the largest single fire in…
Publication Type: Journal Article
Abiotic Factors Modify Ponderosa Pine Regeneration Outcomes After High-Severity Fire
Year: 2024
Large high-severity burn patches are increasingly common in southwestern US dry conifer forests. Seed-obligate conifers often fail to quickly regenerate large patches because their seeds rarely travel the distances required to reach core patch area. Abiotic factors may further alter the distance seeds can travel to regenerate a patch, which would change expected post-fire regeneration patterns. We used the presence and density of ponderosa pine regeneration as a proxy for seed dispersal to quantify the effect of abiotic factors on seed dispersal into high-severity patches. We established 45…
Publication Type: Journal Article
Contemporary fires are less frequent but more severe in dry conifer forests of the southwestern United States
Year: 2024
Wildfires in the southwestern United States are increasingly frequent and severe, but whether these trends exceed historical norms remains contested. Here we combine dendroecological records, satellite-derived burn severity, and field measured tree mortality to compare historical (1700-1880) and contemporary (1985-2020) fire regimes at tree-ring fire-scar sites in Arizona and New Mexico. We found that contemporary fire frequency, including recent, record fire years, is still <20% of historical levels. Since 1985, the fire return interval averages 58.8 years, compared to 11.4 years before…
Publication Type: Journal Article
Estimating the influence of field inventory sampling intensity on forest landscape model performance for determining high-severity wildfire risk
Year: 2024
Historically, fire has been essential in Southwestern US forests. However, a century of fire-exclusion and changing climate created forests which are more susceptible to uncharacteristically severe wildfires. Forest managers use a combination of thinning and prescribed burning to reduce forest density to help mitigate the risk of high-severity fires. These treatments are laborious and expensive, therefore optimizing their impact is crucial. Landscape simulation models can be useful in identifying high risk areas and assessing treatment effects, but uncertainties in these models can limit…
Publication Type: Journal Article
Trees have similar growth responses to first-entry fires and reburns following long-term fire exclusion
Year: 2024
Managing fire ignitions for resource benefit decreases fuel loads and reduces the risk of high-severity fire in fire-suppressed dry conifer forests. However, the reintroduction of low-severity wildfire can injure trees, which may decrease their growth after fire. Post-fire growth responses could change from first-entry fires to reburns, as first-entry fires reduce fuel loads and the vulnerability among trees to fire effects, which may result in trees sustaining less damage during reburns. To determine whether trees had growth responses that varied from first-entry fires to reburns, we cored…
Publication Type: Journal Article
Accelerated forest restoration may benefit spotted owls through landscape complementation
Year: 2024
Animals often rely on the presence of multiple, spatially segregated cover types to satisfy their ecological needs; the juxtaposition of these cover types is called landscape complementation. In ecosystems that have been homogenized because of human land use, such as fire-suppressed forests, management activities have the potential to increase the heterogeneity of cover types and, therefore, landscape complementation. We modeled changes to California spotted owl (Strix occidentalis occidentalis) nesting/roosting habitat, foraging habitat and habitat co-occurrence (i.e. landscape…
Publication Type: Journal Article
Ladder fuels rather than canopy volumes consistently predict wildfire severity even in extreme topographic-weather conditions
Year: 2024
Drivers of forest wildfire severity include fuels, topography and weather. However, because only fuels can be actively managed, quantifying their effects on severity has become an urgent research priority. Here we employed GEDI spaceborne lidar to consistently assess how pre-fire forest fuel structure affected wildfire severity across 42 California wildfires between 2019–2021. Using a spatial-hierarchical modeling framework, we found a positive concave-down relationship between GEDI-derived fuel structure and wildfire severity, marked by increasing severity with greater fuel loads until a…
Publication Type: Journal Article