Research Database
Displaying 121 - 140 of 161
Categorizing the social context of the wildland urban interface: Adaptive capacity for wildfire and community "archetypes"
Year: 2015
Understanding the local context that shapes collective response to wildfire risk continues to be a challenge for scientists and policymakers. This study utilizes and expands on a conceptual approach for understanding adaptive capacity to wildfire in a comparison of 18 past case studies. The intent is to determine whether comparison of local social context and community characteristics across cases can identify community "archetypes" that approach wildfire planning and mitigation in consistently different ways. Identification of community archetypes serves as a potential strategy for…
Publication Type: Journal Article
Wildland fire deficit and surplus in the western United States, 1984-2012
Year: 2015
Wildland fire is an important disturbance agent in the western US and globally. However, the natural role of fire has been disrupted in many regions due to the influence of human activities, which have the potential to either exclude or promote fire, resulting in a "fire deficit" or "fire surplus", respectively. In this study, we developed a model of expected area burned for the western US as a function of climate from 1984 to 2012. We then quantified departures from expected area burned to identify geographic regions with fire deficit or surplus. We developed our model of area burned as a…
Publication Type: Journal Article
Modeling the direct effect of salvage logging on long-term temporal fuel dynamics in dry-mixed conifer forests
Year: 2015
Salvage logging has been proposed to reduce post-fire hazardous fuels and mitigate re-burn effects, but debate remains about its effectiveness when considering fuel loadings are dynamic, and re-burn occurrence is stochastic, in time. Therefore, evaluating salvage loggings capacity to reduce hazardous fuels requires estimating fuel loadings in unmanipulated and salvaged stands over long time periods. We sampled for snag dynamics, decomposition rates, and fuel loadings within unmanipulated high-severity portions of 7 fires, spanning a 24-year chronosequence, in dry-mixed conifer forests of…
Publication Type: Journal Article
Challenges of assessing fire and burn severity using field measures, remote sensing and modelling
Year: 2014
Comprehensive assessment of ecological change after fires have burned forests and rangelands is important if we are to understand, predict and measure fire effects. We highlight the challenges in effective assessment of fire and burn severity in the field and using both remote sensing and simulation models. We draw on diverse recent research for guidance on assessing fire effects on vegetation and soil using field methods, remote sensing and models. We suggest that instead of collapsing many diverse, complex and interacting fire effects into a single severity index, the effects of fire should…
Publication Type: Journal Article
Wildland fire emissions, carbon, and climate: Modeling fuel consumption
Year: 2014
Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic process that leads to heat absorbing emissions called greenhouse gas and other aerosol emissions that can impact atmospheric and ecosystem processes, carbon stocks, and land surface reflectance. It is a critical requirement for…
Publication Type: Journal Article
Beyond reducing fire hazard: fuel treatment impacts on overstory tree survival
Year: 2014
Fuel treatment implementation in dry forest types throughout the western UnitedStates is likely to increase in pace and scale in response to increasing incidence of large wildfires.While it is clear that properly implemented fuel treatments are effective at reducing hazardousfire potential, there are ancillary ecological effects that can impact forest resilience eitherpositively or negatively depending on the specific elements examined, as well as treatment type,timing, and intensity. In this study, we use overstory tree growth responses, measured sevenyears after the most common fuel…
Publication Type: Journal Article
Mathematical model and sensor development for measuring energy transfer from wildland fires
Year: 2014
Current practices for measuring high heat flux in scenarios such as wildland forest fires use expensive, thermopile-based sensors, coupled with mathematical models based on a semi-infinite-length scale. Although these sensors are acceptable for experimental testing in laboratories, high error rates or the need for water cooling limits their applications in field experiments. Therefore, a one-dimensional, finite-length scale, transient-heat conduction model was developed and combined with an inexpensive, thermocouple-based rectangular sensor, to create a rapidly deployable, non-cooled sensor…
Publication Type: Journal Article
Simulated western spruce budworm defoliation reduces torching and crowning potential: a sensitivity analysis using a physics-based fire model
Year: 2014
The widespread, native defoliator western spruce budworm (Choristoneura occidentalis Freeman) reduces canopy fuels, which might affect the potential for surface fires to torch (ignite the crowns of individual trees) or crown (spread between tree crowns). However, the effects of defoliation on fire behaviour are poorly understood. We used a physics-based fire model to examine the effects of defoliation and three aspects of how the phenomenon is represented in the model (the spatial distribution of defoliation within tree crowns, potential branchwood drying and model resolution). Our…
Publication Type: Journal Article
Modeling Regional-Scale Wildland Fire Emissions with the Wildland Fire Emissions Information System
Year: 2014
As carbon modeling tools become more comprehensive, spatialdata are needed to improve quantitative maps of carbon emissions from fire.The Wildland Fire Emissions Information System (WFEIS) provides mappedestimates of carbon emissions from historical forest fires in the United Statesthrough a web browser. WFEIS improves access to data and provides a consistentapproach to estimating emissions at landscape, regional, and continentalscales. The system taps into data and tools developed by the U.S. Forest Serviceto describe fuels, fuel loadings, and fuel consumption and merges informationfrom the…
Publication Type: Journal Article
Climate and very large wildland fires in the contiguous western USA
Year: 2014
Very large wildfires can cause significant economic and environmental damage, including destruction of homes, adverse air quality, firefighting costs and even loss of life. We examine how climate is associated with very large wildland fires (VLWFs ≥50 000 acres, or ~20 234 ha) in the western contiguous USA. We used composite records of climate and fire to investigate the spatial and temporal variability of VLWF–climatic relationships. Results showed quantifiable fire weather leading up and up to 3 weeks post VLWF discovery, thus providing predictors of the probability that VLWF occurrence in…
Publication Type: Journal Article
Examining fire-prone forest landscapes as coupled human and natural systems
Year: 2014
Fire-prone landscapes are not well studied as coupled human and natural systems (CHANS) and present many challengesfor understanding and promoting adaptive behaviors and institutions. Here, we explore how heterogeneity, feedbacks, and externaldrivers in this type of natural hazard system can lead to complexity and can limit the development of more adaptive approaches topolicy and management. Institutions and social networks can counter these limitations and promote adaptation. We also develop aconceptual model that includes a robust characterization of social subsystems for a fire-prone…
Publication Type: Journal Article
Mapping the daily progression of large wildland fires using MODIS active fire data
Year: 2014
High temporal resolution information on burnt area is needed to improve fire behaviour and emissions models. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly and active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the timing of burnt area for 16 large wildland fires. For each fire, parameters for the kriging model were defined using variogram analysis. The optimal number of observations used to estimate a pixel’s time of burning varied between four and six among the fires studied. The median standard error from…
Publication Type: Journal Article
The Effectiveness and Limitations of Fuel Modeling Using the Fire and Fuels Extension to the Forest Vegetation Simulator
Year: 2014
Fuel treatment effectiveness is often evaluated with fire behavior modeling systems that use fuel models to generate fire behavior outputs. How surface fuels are assigned,either using one of the 53 stylized fuel models or developing custom fuel models, can affect predicted fire behavior. We collected surface and canopy fuels data beforeand 1, 2, 5, and 8 years after prescribed fire treatments across 10 national forests in California. Two new methods of assigning fuel models within the Fire and FuelsExtension to the Forest Vegetation Simulator were evaluated. Field-based values for dead and…
Publication Type: Journal Article
Fire behavior in masticated fuels: A review
Year: 2014
Mastication is an increasingly common fuels treatment that redistributes “ladder” fuels to the forest floor to reduce vertical fuel continuity, crown fire potential, and fireline intensity, but fuel models do not exist for predicting fire behavior in these fuel types. Recent fires burning in masticated fuels have behaved in unexpected and contradictory ways, likely because the shredded, compact fuel created when trees and shrubs are masticated contains irregularly shaped pieces in mixtures quite different from other woody fuels. We review fuels characteristics and fire behavior in masticated…
Publication Type: Journal Article
Optimising fuel treatments over time and space
Year: 2013
Fuel treatments have been widely used as a tool to reduce catastrophic wildland fire risks in many forests around the world. However, it is a challenging task for forest managers to prioritise where, when and how to implement fuel treatments across a large forest landscape. In this study, an optimisation model was developed for long-term fuel management decisions at a landscape scale. Using a simulated annealing algorithm, the model optimises locations and timing of fuel treatments, while considering changes in forest dynamics over time, fire behaviour and spread, values at risk, and…
Publication Type: Journal Article
Examination of the wind speed limit function in the Rothermel surface fire spread model
Year: 2013
The Rothermel surface fire spread model includes a wind speed limit, above which predicted rate of spread is constant. Complete derivation of the wind limit as a function of reaction intensity is given, along with an alternate result based on a changed assumption. Evidence indicates that both the original and the revised wind limits are too restrictive. Wind limit is based in part on data collected on the 7 February 1967 Tasmanian grassland fires. A reanalysis of the data indicates that these fires might not have been spreading in fully cured continuous grasslands, as assumed. In addition,…
Publication Type: Journal Article
Living in a tinderbox: wildfire risk perceptions and mitigating behaviors
Year: 2013
The loss of homes to wildfires is an important issue in the USA and other countries. Yet many homeowners living in fire-prone areas do not undertake mitigating actions, such as clearing vegetation, to decrease the risk of losing their home. To better understand the complexity of wildfire risk-mitigation decisions and the role of perceived risk, we conducted a survey of homeowners in a fire-prone area of the front range of the Rocky Mountains in Colorado. We examine the relationship between perceived wildfire risk ratings and risk-mitigating behaviours in two ways. First, we model wildfire…
Publication Type: Journal Article
Modelling conditional burn probability patterns for large wildland fires
Year: 2013
We present a technique for modelling conditional burn probability patterns in two dimensions for large wildland fires. The intended use for the model is strategic program planning when information about future fire weather and event durations is unavailable and estimates of the average probabilistic shape and extent of large fires on a landscape are needed. To model average conditional burn probability patterns, we organised historical fire data from Yellowstone National Park, USA, into a set of grids; one grid per fire. We captured various spatial relationships inherent in the gridded data…
Publication Type: Journal Article
Assessing forest vegetation and fire simulation model performance after the Cold Springs wildfire, Washington, USA
Year: 2013
Given that resource managers rely on computer simulation models when it is difficult or expensive to obtain vital information directly, it is important to evaluate how well a particular model satisfies applications for which it is designed. The Forest Vegetation Simulator (FVS) is used widely for forest management in the US, and its scope and complexity continue to increase. This paper focuses on the accuracy of estimates made by the Fire and Fuels Extension (FFE-FVS) predictions through comparisons between model outputs and measured post-fire conditions for the Cold Springs wildfire and on…
Publication Type: Journal Article